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When they are applicable, gradient based optimization algorithms are the most e�cient way
to solve design optimization problems. Although gradient based methods are generally e�cient,
they can be made signi�cantly more so through the usage of analytic techniques to compute
the necessary total derivatives. The traditional forward (direct) and reverse (adjoint) analytic
techniques have computational costs that scale linearly with the number of design variables
and the number of constraints, respectively. In this work, we present an application of a
graph coloring algorithm to the analytic techniques for computing total derivative Jacobians
in order to achieve much better computational scaling than the pure analytic methods can
provide alone. A detailed theoretical explanation of how coloring algorithms interact with
analytic derivative methods is presented that illustrates speci�c types of sparsity patterns
that must be present in total derivative Jacobians in order for this coloring technique to be
e�ective. The new technique has been implemented as a feature in the OpenMDAO framework
and the implementation is demonstrated on two example problems. The performance on the
example problems up to 50% reduction in compute cost for optimizations with bi-directional
coloring compared to traditional constraint aggregation. Additionally, the results show how
coloring technique alleviates some of the numerical di�culties that constraint aggregation can
cause, leading to the ability to solve larger problems. It is expected that the new method will
have wide applicability to multidisciplinary optimization problems, and that its availability in
OpenMDAO will o�er signi�cant computational savings for users without the need for them to
implement the coloring algorithm themselves.

I. Introduction
Gradient based optimization is an extremely e�cient tool for solving high dimensional optimization problems with

continuous design variables. Gradient based optimizers require functions that compute the objective and constraints
as well as the derivatives of those functions with respect to the design variables. A general optimization problem
formulation is given in Table 1.

Table 1 Generic optimization problem formulation

Variable/Function Description

minimize F „x” objective
with respect to x design variables

such that R„x; y” = 0 governing equations
G„x; y” < 0 inequality constraints

In Table 1, the governing equationsR„x; y” = 0 must be solved for any given value ofx. While you could converge
the governing equations with the optimizer, more commonly a nonlinear solver is used so that an evaluation ofF „x”
andG„x” and internal solver iterations to �nd the values ofy that satisfy the governing equations. Computing the
functions of interest � i.e. F „x” andG„x” � is a fundamental goal of any analysis tool and hence can be essentially
taken for granted in the context of optimization. Not all analysis tools provide built functionality for computing analytic
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of computing total derivative Jacobians since that is where the coloring algorithm has its primary e�ect. However,
our results show that the improved numerical stability of the colored problem formulation vs the aggregated one also
provides bene�ts in terms of the number of major iterations as well.

Table 5 provides a detailed breakdown of the number of linear solves requires to compute the total derivative
Jacobian for each case examined, including information on how many forward and reverse mode solves are required
for each formulation of the problem. The computational scaling of each formulation can be more clearly seen when
plotted on a log-log scale, as shown in Figure 5. The number of linear solves for the raw problem scaled linearly with
the number of vehicles, giving roughly 53 constraints per aircraft. While linear scaling is certainly better than the
quadratic scaling that would have occurred from a naive implementation of the separation constraints, it still results in
an unacceptably large number of required linear solves. When we apply the bi-directional coloring algorithm, we can
achieve far better scaling with a slope of just 0.5, meaning that the number of total linear solves required grows far slower
than the number of aircraft. With constraint aggregation applied to the separation constraint � and coloring applied
to the overall Jacobian as well � the total number of linear solves becomes completely independent of the number
of aircraft. So, purely from the perspective of the number of linear solves, aggregation of the separation constraint
provides a clear advantage. However, even for the 80 aircraft case, the colored formulation requires just 30 total linear
solves � about 4 times more than the aggregated formulation but still about 100 times less than the raw problems. If we
assume that the two formulations have roughly the same cost to perform a single linear solve, then both colored and
aggregated formulations have reduced the problem to a feasible size to solve, though the aggregated problem would
appear to be better.

Table 5 Number of linear solves requires to compute total derivative Jacobian for simple air tra�c control
optimization

Naircraft Full problem
(fwd.)

Total colored
(fwd. / rev.)

Total aggregated
(fwd. / rev.)

Separation const.
(colored / aggregated)

5 267 7 / 1 4 / 4 6 / 3
10 532 9 / 1 4 / 4 8 / 3
20 1062 15 / 1 4 / 4 14 / 3
40 2122 21 / 1 4 / 4 20 / 3
80 4242 29 / 1 4 / 4 28 / 3

As we stated earlier, the total cost of the optimization is a function of both the cost to compute the total derivative
Jacobian, and also the number of major iterations required. From the number of linear solves alone, it would be
reasonable to guess that the aggregated optimization would be faster than the colored one, although the conservative
nature of the KS function would mean that it should yield a higher time required when the separation constraint is active.
However, for this problem the numerical challenges posed by KS aggregation ultimately cause the overall optimization
cost to be higher because it takes more iterations, especially for case with larger number of aircraft since these are where
the separation constraint becomes more restrictive.

Table 6 gives the objective function value and number of major iterations required to �nd it forNaircraft =
[5,10,11,12,13,14,15,16,20,40]. For the 5 and 10 aircraft cases, both the colored and aggregated forms of the problem
were solvable and gave the same �nal objective, because the separation constraint was not active enough to bring the
conservativeness or the numerical instability of the KS function into play. Extra cases were run between 10 and 20
aircraft, because this is where the numerical challenges of the KS function start to impede the aggregated formulation.
Both formulations were able to �nd a solution up to 15 aircraft, though in all cases above 10 aircraft the KS function is
clearly impacting the quality of the solution to varying degrees and costing signi�cant increase in the number of major
iterations. There is a signi�cant out lier for the 14 aircraft case where, although the optimization did converge for the
aggregated case it clearly got stuck in a much less e�ective local optima.

The colored formulation was able to �nd decent results for the 16, 20, and 40 aircraft cases. However, the aggregated
formulation was not able to converge for these cases and only the 16 and 20 aircraft cases got any results at all � though
SNOPT reported the problem was ultimately infeasible. SNOPT was not able to �nd a meaningful solution for the 40
aircraft aggregated case.
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Fig. 5 Number of required linear solves to compute the total derivative Jacobian for the non-colored, colored,
and aggregated problem formulations, plotted on a log-log scale.

Table 6 Optimization results comparing the colored and aggregated problem formulations (�*� indicated
non-feasible results).

Colored Aggregated

Naircraft
Objective

(sec.)
No. of

Major iterations
wall time

(sec.)
Objective

(sec.)
No. of

major iterations
wall time

(sec.)

5 4.999 14 3.66 4.999 43 13.63
10 5.091 22 9.04 5.091 24 19.39
11 5.091 17 10.90 5.300 38 28.88
12 5.165 20 14.27 6.738 22 31.38
13 5.174 19 21.55 7.178 37 36.60
14 5.112 21 24.35 14.742 40 46.47
15 5.388 20 22.44 5.938 91 98.11
16 5.138 16 24.54 5.091* 91* 74.18
20 5.406 37 47.07 6.182* 62* 170.27
40 8.369 64 398.39 - -
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