Figure 9. Tank wall temperatureprofile with Low-g
HTC.

The heaflow associated with the temperature changes is
indicated in Table 1 With the sameenvironmentaheat
rate enteringthe tank in both case, the reduced
temperature tank waih the lowg HTC case is noted by
the 0.7 W drop in tank wall net heat when compared to
the g HTC case. Note that the nominal-§§ HTC case
that the propellantis warming slightly even thogh this
was not noticed in theid. 7 pressure curve.There is
additional cryomoler lift or heat removal in the loy
HTC case whichis realized by a decrease in the coolant
gas temperature.

Table 1. Systemheatleakresponseta KD QJLQJ. +7& TV

1*HTC | 0.01*HTC
Heat (Watts) | (Watts)
EnvironmentHeat 96.8 96.8
Tank Wall Net Hat 0.03 -0.7
Cryocoolen.ift 96.77 97.5
IV.SUMMARY

This Nuclear Thermal Propulsion broad area coolirgo
boil-off analysis was perfored to determinehe fluid
respons/enessto heat removahs a function of gravity
level. Inall cases, the hydrogepropellant was treated as
a homogenous fldi which is possible because dfet
presence of thbroad area cooling system. An initial look

at tank pressure response to a 5% oversized cryocooler
systemanda 5% undersized systewith 1-g heat transfer
codficients was done In both cases, tank pressure
changes at a steady rate, enabling a straightforward
control scenario and an effective power storage capability.
As flight data shows lower heat transfer coefficients in
reduced gravity, a comparison of W@ and nominal
coefficients was made to understand the fluid response to
the broadarea cooling system operatiohhe indications

are that the slower fluid response in low gravity issut

by added tankvall cooling This initial study of the fluid
respase to the cryocooler system shows an adequate tank
pressure timelineesponseand an unimpeded ability of
the cryocooler system to control the tank wall
temperature.
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traditional in  the  study.

Ill. RESULTS AND DISCUSSION
[l .A. Effect of Cryocooler Power Modulation in 1-g

To remove the 97 W offank heat leak assuming a -§
environment the cryocooler input power is 6080 and

the helium working gas flow rate is 0.1468 kg/s. At this
set point, thexominalLH; saturationcondition of 23.86 K
and 37.2 psi is achievedlithin about10 hours as shown

in Fig. 4. The initial drop in temperature is due to the
application of cooling to the tank wall, quickly dropping
its temperature along with that of the ullage and liquid.
After the initial temperature decrease, the liquid settles

Figure 2. Inline LH> NTP storage tank with insulation
and support structure attached.

Figure 3. Thermal Desktop tuben-tank nodal model.

Initial conditionswere as follows: the tank was filled
with 70% liquid hydrogen, 30% vapor. The initial
temperature of the liquid was at 242 at a saturation
pressure of 40 psiavhile the initialvapa wasassumed to
be 34 K to include a initial liquid/vapor stratification
This assumed 1K stratification in the LH ullage
temperature was common in a series of 2LH
pressurization tests at-BLWH LQ W KHe initialf V
temperature of thevall was at 24K. The environmental
sink temperatte was taken as 10616. Initial modeling
and sizing of a single stage cryocooler system using the
Cryogenic Analysis Too[(CAT) from Ref. 3indicated
that the cryocooler needed to lift approximately 114 W of
hed from the system, 97 W frothe tank and 17 W from
the gaseous heliunsupply and return lines to the
cryocooler. Therefore, an e* value of 0.0661 in TD was
thus sed to match the 97 W heat leak from the CAT
cryocooler sizing.

out at a constant temperature over time. Tirst
parametric performed is the system responsethi
application of cryocooler power, realized through
changng the helium flowrate.Ref 4 describe the
documentedZBO test resultsthat show the cryogen
behaved like adestratified or homogenous fluidin
response to varying cryocooler set points this
homogenous behavior was assumed herg&ime tank
pressureresponse to increased and decreasgdcoole
mass flow rateis shown in kgs.5 and 6. As indicated
the tank pressuredirectly respondsto changs in

cryocooler mass flowrate and the rate of these changes

increase and decrease similarlincreasing flowrate
decreases tank pressurenabing a straightforward
control schemendan effective power storagaseful for
eclipses o other unknown thermal eventghis offers a
reduction in power storage requirementand more
straightforwad flight operations scenarios.
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Figure 4. LH; saturated émperature plotted at ZBO
condition.
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Figure 5. LH» tank pressure plottewith 5% increased

cryocooler lift
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Figure 6. LH» tank pressure plotted with 5% decreased
heat removal rate.
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Figure 7. Tank pressure response comparison-gfand

assumededucedg HTC.

I1l. B. Effect of Reduced Heat Transfer Coefficient

After orbital

insertion the

thrushg ends and a

microgravity environment ensudbat potentially alters

the liquid hydroge§ V. UHVSRQVH WR WKH =%
Previousreduced gravityflight experiments have found
reduced heat transfer coefficients compared to ground
valuesfor storable fluidgsee Refs. 81 for exampleps

well as cryogerts While it is difficult to estimate the

actual heat transfer coefficient for liquid hydrogen in
micro-gravity, it is straightforward to look at reduced

Earth gravity (1g) coefficients. This study considered- 1

J KHDW WUDQVIHU FRHIILFLHQWY +7&
0.01*1-g HTC, which represents a nea®0% conduction

limit. Theresults are shown in Fid. As in the 1g case,

the initial application of tank wall cooling causes the tank
pressure to dropThe reduced HTC takes about 80 hours

WR UHVSRQG WR WKH WDQNYV EURDG
launch, in comparison td0 hours for the ig case.
Following the 80 hour period, the low HTC tank pressure
continues to drophowever, it is expected to increase and

settle out at 37.2 psi over timén response to the
cryocooler set point and the balance of heat the ZBO
system creates Given that the liquid hydgen is
transferring much less heatthan in g and that the
cryocooler is still removing heat at a steady rate, the
systemresponds by droppinthe tank wall temperature

causing the ullagpressure to drop.This isindicatedin

the comparison of tengratures for the two casesHus.

8 and 9. Much of the tank surface in Fig. 8 is at 23187

while the greatest portion of the low HTC tank wall
temperature itess,between 23.83 and 23%K.
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at tank pressure response to a 5% oversized cryocooler
systemanda 5% undersized systewith 1-g heat transfer
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