

 4

and Seeker will be deployed. Kenobi remains within the NRCSD. After several seconds, Seeker
will begin actively controlling itself to null tipoff attitude rates incurred during the deploy event
and to actively point at the target (called target tracking). As it nears the targeted waypoint of +30m
along the Cygnus velocity vector, it will begin to slow down and then initiate stationkeeping. This
fulfills the minimum success criteria. On the ground, the telemetry should indicate that Seeker is
in a relative position hold, taken several high-resolution images, the propulsion and power systems
are performing nominally, and that the GNC systems are performing as expected. If those condi-
tions are met, the ground will send a command to the AFM for Seeker to continue the mission.
Seeker will then execute a series of translations while remaining in the target tracking attitude
mode. Seeker will travel 5m nadir and then 5m �R�X�W���R�I���S�O�D�Q�H�����G�U�D�Z�L�Q�J���D���E�D�F�N�Z�D�U�G�V���‡�/�·���I�U�R�P���&�\�J��
�Q�X�V�¶ perspective, then translate a few meters towards Cygnus and then back out. At this point, the
ground will review the vehicle systems again and make a call to continue. The AFM will be sent
another command to proceed and the vehicle will begin a series of attitude maneuvers. Upon com-
pletion, the ground will again review the vehicle systems. This fulfills the full success criteria.
After passing further system checks, the ground will again send the AFM the command to proceed.
The vehicle will then be provided a waypoint that is within the predefined KOS. If the vehicle
rejects the waypoint, continuing to stationkeep, the AFM will then be sent another command to
proceed. The vehicle will then execute its LOS demo. During the demo, Kenobi will stop broad-
casting a flag that will cause Seeker to respond as if it has lost communication. However, both
vehicles will still be in communication. Seeker will hold position and wait for the aforementioned
flag to resume broadcasting. The flag broadcast will resume, which the AFM will detect and mode
Seeker out of LOS mode. The ground will command the AFM to proceed, which will cause the
vehicle to do a 90 degree pitch, demonstrating handoff between its communication antennas. After
a short time, the vehicle will pitch back -90 degrees to its prior orientation. This fulfills the stretch
success criteria. Figure 2 shows a visualization of the 3D trajectory relative to Cygnus from an
out-of-plane position, highlighting the in-plane motion. The final action of the mission is a ground-
commanded disposal maneuver where Seeker is commanded to a waypoint further along the posi-
tive orbital velocity vector and nadir from its current position. Seeker will then travel towards that
waypoint until it has exhausted its propellant.

Figure 2: Side-view of Seeker trajectory trail relative to Cygnus

GNC-RELATED DESIGN

Seeker is meant to be the first step of an evolving design that adds capability, as required, in
each subsequent mission. The vehicle for this first mission is intended to have a minimal capability
that is able to operate safely around the target vehicle, visually inspect the target vehicle, and do so
with minimal human input. It should be noted that a significant market for CubeSat components

 5

exists with many space-rated COTS products for common vehicle subsystems. The Seeker GNC
system consists of an AFM Core Flight Software (CFS) application, a suite of sensors and their
associated input/output (I/O) CFS applications, a Kalman filter CFS application, a state propagator
CFS application, a guidance CFS application, and a control CFS application. This is a fairly typical
design where the AFM configures the applications for the current mission sub-phase, the navigation
system incorporates sensor inputs and provides states of the chaser and target spacecraft, the guid-
ance system computes errors between the current and desired states, and the control system com-
mands the effectors to reduce the errors guidance has calculated. Subsystems that impact GNC are
also described in brief.

Flight Software and Simulation

Given its wide-spread use, heritage, flexibility, familiarity, and support, CFS was selected as
the flight software architecture. CFS consists of an Operating System Abstraction Layer (OSAL),
Platform Support Package (PSP), core Flight Executive, and various libraries and applications. The
OSAL and PSP components enable a large variety of hardware and operating systems to be used
without significant reconfiguration. The CFS framework has applications communicate via a pub-
lish-subscribe architecture, where these messages are all put onto and pulled from a Software Bus
Network.5 This allows applications to be built quickly as developers can focus on their functions
instead of on the inter-application communication. This also allows developers with limited
knowledge of CFS to flesh out application templates into full-fledged applications very quickly
that require minimal integration into the rest of the CFS framework. Given this segmented, modular
application approach, it is very easy to reuse applications in future development. CFS is often
�Y�L�V�X�D�O�L�]�H�G���D�V���D���‡�E�X�E�E�O�H�·���F�K�D�U�W�����Z�K�H�U�H���H�D�F�K���D�S�S�O�L�F�D�W�L�R�Q���L�V���U�H�S�U�H�V�H�Q�W�H�G���E�\���L�W�V���R�Z�Q���‡�E�X�E�E�O�H���·�����7�K�L�V���L�V��
shown in Figure 3.

Figure 3: CFS architecture "bubble" chart

The GNC subsystem required an integrated simulation for development. This drove the devel-
opment of an integrated environment where FSW could drive a physics-based CubeSat model. The
Trick simulation development environment was selected due to its capability, common usage at
JSC, and in-house support. A simulation was created that modeled the Cygnus target vehicle, the

 6

Seeker chaser vehicle, effectors for both, and celestial bodies. The Valkyrie generic model package
was used for the sensor models and the JSC Engineering Orbital Dynamics package was used for
the dynamics.* Trick allows for data logging, faster than real-time runs (with an option for real-
time), and has a Monte Carlo capability.

In order to have an integrated simulation and FSW environment that can be used faster than
real-time, an interface between Trick and CFS was required. This had been done in the past with
an application called TrickCFS, which was upgraded to interface the newer versions of Trick and
CFS that the Seeker project was using.

The Trick/CFS/TrickCFS framework was used to develop and analyze the GNC and FSW sys-
tem. The Monte Carlo capability within Trick was used to assess the impacts of various combina-
tions of environmental conditions, sensor noise, and other events. This produces an enormous
amount of data that is difficult to parse with the simple Python plotting scripts that were used for
single-run analysis. For quickly loading and assessing data, an internal JSC data analysis package
called Koviz was used. Koviz is designed to quickly load and plot large volumes of data. A key
feature of Koviz is its ability to load the associated dispersed parameters and then sort the plotted
lines based on them, clearly highlighting the driving parameter (if there are any). For automated
requirements checking, another internal JSC tool was used, known as VERAS. VERAS loads the
run data, parses it, compares it to requirements, and then creates pdf reports that show how the
requirements are (or are not) met. The reports also detail the exact software version used to create
the data, eliminating confusion as the number of run sets increases.

The ability to visualize 3D representations of the physical vehicles and nearby planetary bodies
allows for rapid assessment of performance. This created a strong desire for a visualization package
that could be paired with the integrated simulation and FSW environment. This was done with the
Engineering DOUG Graphics for Exploration software package.�� High fidelity Seeker and Cygnus
models were added along with approximate models of the inspection and navigation cameras. This
not only provided a faster-than-real-time, in-the-loop way to �D�V�V�H�V�V���W�K�H���Y�H�K�L�F�O�H�¶�V���E�H�K�D�Y�L�R�U during
simulation runs, but also provided a visualization of behavior during hardware-in-the-loop demos
and a quick way to assess the lighting environment and impact of various deployment configura-
tions.

AFM

The AFM is essentially a state machine that ensures the GNC software is appropriately config-
ured for the current mission sub-phase. The AFM gets its knowledge of phase and sub-phase con-
figuration from a user-created CFS table, known as an initialization load (iLoad). This file contains
descriptions of each mission phase and sub-phase that define the behavior of the applications that
receive information and/or commands from the AFM. After it initializes, the AFM only receives
ground commands and guidance error. While the AFM typically only advances through states in
an incremental fashion (e.g. state 1, state 2, state 3), it can be moded via ground command from
�D�Q�\���S�K�D�V�H���L�Q�W�R���W�K�H���W�H�U�P�L�Q�D�O���‡�G�L�V�S�R�V�H�·���D�Q�G���‡�L�Q�K�L�E�L�W�·���V�W�D�W�H�V�� During normal operation, the AFM is
�O�R�R�N�L�Q�J���I�R�U���‡�W�U�L�J�J�H�U�V�·���W�R���W�U�D�Q�V�L�W�L�R�Q���I�U�R�P���W�K�H���F�X�U�U�H�Q�W���V�X�E-�S�K�D�V�H���W�R���W�K�H���Q�H�[�W�������7�K�H���‡�W�U�L�J�J�H�U�V�·���W�K�D�W���$�)�0��
supports includes time-based, ground command-based, and guidance error-based (referred to as a
�‡�G�H�D�G�E�D�Q�G�·��and can be cued from rotational and translational position and rate). In addition to the
GNC applications, the AFM also drivers the behavior of the inspection camera and the applications
involved in the LOS demo.

* https://www.nasa.gov/centers/johnson/techtransfer/technology/MSC-24532-1-jeod.html
�� https://software.nasa.gov/software/MSC-24663-1

 7

Sensors

Seeker has a sensor suite that includes a Sensonor STIM 300-400-5 Inertial Measurement Unit
(IMU), Jenoptik DLEM-SR laser rangefinder (LRF), four Solar MEMS nanoSSOC-D60 sun sen-
sors, and a Sony FCB-MA130 camera paired with algorithms developed by the University of Texas
at Austin (UT). Some of these sensors can be seen integrated into the sensor bracket in Figure 4.
The sensor types required for this mission were selected by performing a study using the linear
covariance analysis tool (LinCov) to determine the minimum set of required sensors that met the
mission requirements, including size, weight, and power (SWaP), performance, schedule, and
budget. Once the sensor types had been selected, candidate units were identified from a study of
COTS and space-rated COTS items that have demonstrated space heritage. In certain cases where
sensors were less than $10k, several units were purchased to evaluate in parallel in an effort to
reduce the schedule and maximize performance. On the COTS side, special preference was given
to tactical-grade units as they already have a significant amount of environmental robustness. The
STIM IMU was on-orbit onboard ISS as part of the Raven package on STP-H5 and the DLEM-SR
was on-orbit onboard AeroCube 7. While these units are more rugged than standard COTS items
and had limited on-orbit heritage, concern about the possibility of the unpublicized changes in the
assembly and makeup of these units necessitated a brief environmental test campaign in order to
qualify them for the space environment. The units were subjected to thermal, vacuum, vibration,
and blinding tests. After each test, it was confirmed that their operation was within their specifica-
tions. The units were also tested for shock and through other environmental tests similar to before
when integrated into the vehicle with their functionality and performance verified afterward.

Figure 4. Integrated sensor bracket on the FlatSat with sun sensors (left and top), LRF

(lower left), vision-based navigation camera (center left), GPS receiver and antenna (center
and top), and IMU (occluded behind right edge).

 9

Figure 6: Seeker Navigation Architecture

The IMUPre application has Morpheus and Resource Prospector heritage and was largely used
as it was originally designed. It is responsible for down-sampling the high-rate data from the IMU,
performing coning and sculling corrections, and producing a single 50 Hz output for the other nav-
igation components. The IMUPre application maintains its own inertial reference frame which is
snapped at the system startup and enables the use of multiple IMUs, if desired. The accumulated
delta-V and an updated vehicle body-to-reference frame quaternion are output from the application,
along with instantaneous sensed acceleration and angular rates in the vehicle body frame. By com-
bining the IMUPre inertial reference frame with an assumption of the Seeker position and orienta-
tion at deployment, the vehicle is able to obtain an initial estimate of its attitude in a J2000 reference
frame.

The FASTNAV application performs the high-rate integration of the vehicle state. Once the
NAV application initializes the vehicle state vector and computes the gravity vector and the gravity
gradient matrix for both Seeker and the Cygnus vehicle (based on a known initial relative state),
FASTNAV is able to integrate both the Seeker inertial state and the Seeker-to-Cygnus relative state
through time. Gyroscope and accelerometer bias is compensated by removing the bias estimates
(Gauss-Markov states) from the measurement. The body frame attitude change and the accumu-
lated delta-V output from IMUPre are then used to integrate the vehicle state. The Cygnus state is
derived from the Seeker inertial state and the estimated relative state, and both the Seeker and
Cygnus states are propagated forward using a second-order Taylor series expansion, incorporating
the sensed velocity change applied to Seeker only.

Once the vehicle states are integrated, FASTNAV computes the dynamics partial derivative
matrix and integrates the vehicle state transition matrix (STM), again using a second-order expan-
sion. A frame counter between FASTNAV and NAV monitors for each time the NAV application
will run and resets the STM back to identity after passing out the propagated matrix for NAV to
use, along with the dynamics partials for measurement back-propagation. Additionally on this
frame, FASTNAV integrates the last state vector correction from NAV to the current time using
the STM and updates the state vector to incorporate the measurements.

The NAV application utilizes a Multiplicative Extended Kalman Filter (MEKF) formulation to
perform the measurement update to the state vector at 5 Hz. The filter carries 24 states that cover
Seeker�¶s inertial position, velocity, attitude (deviation), relative position, relative velocity, gyro
bias, accel bias, LRF bias, and camera bias. At startup, NAV waits for the FSW to receive data
from the Kenobi GPS receiver. Upon receipt of valid GPS data, NAV uses the ECEF state from

 10

the GPS to initialize the Seeker navigation state vector. In the event the Kenobi GPS fails to ac-
quire, the project has implemented the capability to command an estimated ECEF state and time
from the ground to initialize navigation.

In each cycle, NAV begins by performing its time update, updating the state vector using the
FASTNAV propagated state, computing the process noise matrix, and updating the state covariance
matrix. Once the vehicle state is integrated to the time tag of the most recent IMU measurement,
NAV checks for new measurements from each of the vehicle sensors by comparing the time tag of
the data packet received from the sensor IO application to the time tag of the last known measure-
ment. If a new measurement was received, NAV uses the current dynamics matrix from
FASTNAV to back-propagate the vehicle state to the measurement time, compute the estimated
measurement, residuals, and measurement partials. The measurements are processed one at a time
to avoid matrix inversion and accumulated into a single state update vector using the Joseph form
to update the covariance matrix. It is considered best practice to use the Joseph update in order to
assure a symmetric covariance matrix. The filter has configurable underweighting parameters for
each measurement type to ensure smooth convergence and an iLoaded residual edit threshold,
which is compared to the square of the measurement residual over the measurement innovation, to
reject spurious measurements. After the attitude correction is rectified, the state update is passed
out to be used by FASTNAV along with an updated gravity and gravity gradient vector to perform
the next propagation steps.

Guidance

�6�H�H�N�H�U�¶�V���J�X�L�G�D�Q�F�H���D�O�J�R�U�L�W�K�P���Z�D�V���G�H�V�L�J�Q�H�G and integrated with the control algorithm to achieve
�Z�D�\�S�R�L�Q�W���V�H�H�N�L�Q�J�����S�R�V�L�W�L�R�Q���D�Q�G���D�W�W�L�W�X�G�H���K�R�O�G�V�����W�D�U�J�H�W���W�U�D�F�N�L�Q�J�����D�Q�G���W�R���O�L�P�L�W���6�H�H�N�H�U�¶�V���U�H�O�D�W�L�Y�H���N�L�Q�H�W�L�F��
energy. Since Seeker will operate in close proximity (approximately 30 m) to the target vehicle,
relative orbital dynamics were assumed to be negligible, which simplified the guidance algorithm.
The guidance application runs at 5 Hz, receiving mode and waypoint information from the AFM
as well as the current state from the navigation system. Using this data, guidance computes velocity,
attitude, and angular rate errors in the LVLH frame. The velocity error is generated using logic
similar to potential field approaches, which generate a force as a function of position within an
artificial potential field.

The method implemented on Seeker computes a velocity command as a function of distance to
the desired waypoint. This function outputs a constant magnitude velocity command if Seeker is
farther than an iLoaded distance to the current waypoint and a linearly decreasing velocity com-
mand as Seeker approaches the waypoint within the iLoaded distance. Effectively, this is an outer
�O�R�R�S�� �F�R�Q�W�U�R�O�O�H�U�� �W�K�D�W�� �O�L�P�L�W�V�� �6�H�H�N�H�U�¶�V�� �N�L�Q�H�W�L�F�� �H�Q�H�U�J�\����The velocity error is then just the difference
between the velocity command and �6�H�H�N�H�U�¶�V���Y�H�O�R�F�L�W�\���U�H�O�D�W�L�Y�H���W�R���&�\�J�Q�X�V.

Target tracking is achieved by computing �D���G�H�V�L�U�H�G���D�W�W�L�W�X�G�H���W�K�D�W���R�U�L�H�Q�W�V���6�H�H�N�H�U�¶�V�����;���E�R�G�\���D�[�L�V��
along the position vector to the target vehicle. This ensures the LRF and navigation camera stay
pointed at the target vehicle to provide range and bearing measurements to the navigation system.
The attitude error is the rotation between the current and desired attitude, and is converted to Euler
angles which are used by the phase plane control algorithm. The rate error is computed using the
phase plane control logic and attitude errors. Position and attitude holds are achieved by treating
�6�H�H�N�H�U�¶�V���S�R�V�L�W�L�R�Q���D�Q�G���D�W�W�L�W�X�G�H�����D�W���W�K�H���P�R�P�H�Q�W���W�K�H���K�R�O�G�V���D�U�H���L�Q�L�W�L�D�W�H�G�����D�V���W�K�H��desired waypoint and
the desired attitude respectively, which permits re-use of waypoint seeking and attitude maneuver
logic. Additionally, the guidance algorithm checks AFM-provided waypoints in relation to an
iLoaded KOS to ensure Seeker is not commanded into or through the KOS. Future implementation
of this hazard avoidance approach will likely use dynamically generated KOSs as vehicle environ-
mental/situational awareness improves.

 11

Control

The control flight software application runs at 5 Hz and receives new inputs each cycle to cal-
culate thruster firing commands. The main function reads the current errors from guidance and the
current control modes from AFM, as well as the control inputs. The control inputs can be updated
based on the AFM flight phase. The main function calls the control and thruster selection algo-
rithms and publishes the resulting thruster firing commands for the propulsion and navigation ap-
plications. A proportional-integral function calculates the command per axis from the translational
error, and a phase plane function calculates the command per axis from the rotational error. The
thruster selection function calculates the firing time per thruster from both the translational and
rotational commands. A final thruster combination function combines the translational and rota-
tional firing commands and limits the number of thrusters firing to meet vehicle limitations.

A thruster test function can be run to verify the thruster mapping and interface between GNC
and the flight hardware. If the control mode is set to OFF in AFM, the control application continu-
ously publishes zeros as its output. Once the control mode is set to FLIGHT, the control application
commands the thruster isolation valve open and begins processing the errors from guidance. The
control application zeros stale guidance data and resets the integral term after free drift to prevent
extraneous thruster firings. The functions are generically designed and can be implemented in other
spacecraft GNC systems with updated inputs.

Avionics, Communication, and Power

The avionics, communication, and power subsystems consist of a combination of COTS, space-
rated COTS, and custom boards that provide all the electrical interfaces, processing power, wireless
communication, and power for the other subsystems. The integrated power system, computers, and
other avionics boards are shown in Figure 7.

Seeker and Kenobi are both designed to each have two computers onboard. The primary com-
puter is �W�K�H�� �1�D�W�L�R�Q�D�O�� �6�F�L�H�Q�F�H�� �)�R�X�Q�G�D�W�L�R�Q�¶�V�� �&�H�Q�W�H�U�� �I�R�U�� �6�S�D�F�H���� �+�L�J�K-performance, and Resilient
Computing (CHREC) Space Processor (CSP). The CSP is a space-rated COTS item, balancing
cost and reliability in the space environment. The CSP has a dual-core ARM Cortex A9 processor,
250 MB of RAM, and a Field Programmable Gate Array (FPGA), used for various interfaces on
Seeker and the high speed serial connection on Kenobi. An Intel Joule 570X was selected as the
secondary computer, also known as the Camera Image Processor (CIP) as it was intended to be
used for the CPU-intensive VizNav algorithms. This selection leveraged the prior assessment done
by the High Definition EVA Mobility Unit Camera Assembly project. The Joule has a quad-core
Intel Atom processor at 2.4 GHz per core and 4 GB of RAM in a 24x48mm form factor (not in-
cluding interface board). The translation of FSW control commands into valve commands is done
by a custom board internally referred to as the prop controller, which uses an FPGA.

 12

Figure 7: Seeker avionics stack

Seeker has two Sony FCB-MA130 cameras on board. One has a 7.2 mm lens and the other has
a 20 mm lens. The one with the 7.2 mm lens is used for the VizNav algorithms (known as the
navigation camera) and then other (known as the inspection camera) is used for taking high reso-
lution images of the target spacecraft. The CSP, Joule, and cameras, are connected with a COTS
USB hub.

Seeker and Kenobi communicate wirelessly via 5 GHz wifi. The Joule onboard Kenobi is con-
nected to a COTS Netis WF2190 USB wifi dongle, which is then connected to a COTS Tecom C-
band antenna. Seeker has another Tecom C-band antenna that is connected directly to its onboard
�-�R�X�O�H�������$���V�S�U�L�Q�J���I�L�Q�J�H�U���F�R�Q�Q�H�F�W�L�R�Q���R�Q���W�K�H���X�S�S�H�U���V�X�U�I�D�F�H���R�I���6�H�H�N�H�U���D�O�O�R�Z�V���.�H�Q�R�E�L���W�R���D�F�W�X�D�W�H���6�H�H�N�H�U�¶�V��
latching relay, powering the vehicle, while commands and data are exchanged wirelessly through
�D���S�D�W�F�K���D�Q�W�H�Q�Q�D���H�P�E�H�G�G�H�G���L�Q�W�R���6�H�H�N�H�U�¶�V���1�5�&�6�’���W�X�E�H��

Power for Seeker is provided by a space-rated COTS GomSpace NanoPower BP4 Lithium-Ion
battery pack distributed via two GomSpace P60 PDU-200 power distribution units all integrated
on a GomSpace P60 dock. This configuration is advertised to provide 38.5 Wh of energy, which
is expected to provide approximately 90 minutes of operation. Power for Kenobi is provided di-
rectly from the Cygnus host vehicle.

Propulsion

The propulsion subsystem uses cold, gaseous nitrogen and twelve 0.1N thrusters to provide
control authority in all six DOF. The system was designed entirely in-house at JSC and is com-
prised of COTS fluid components, custom machined manifolds, and custom additively manufac-
tured thrusters. The propulsion subsystem is advertised to provide approximately 5m/s delta-V to
a 5.75kg vehicle with the subsystem itself packed within an approximately 1.25U form factor. The
integrated system is shown in Figure 8. Even though the Seeker project had greater flexibility in a
variety of requirements due to the Class 1E classification, the propulsion subsystem still had to
meet a number of ISS safety and performance requirements.

 8

Vision-Based Navigation

The vision-based navigation system (VizNav) was envisioned to provide a bearing measurement
to the target vehicle. Frequently changing ConOps meant that the algorithm would need to be
robust to various lighting conditions and potentially the Earth in the background of the image.
Given the aggressive schedule, there also would not be an opportunity to gather imagery of the
Cygnus with the baselined camera in simulated on-orbit lighting, driving the need for increased
robustness. With these significant demands and a very tight schedule, a parallel development with
traditional computer vision and neural-network-type approaches was used to develop three algo-
rithmic approaches. By the time a selection was made, only two were still being considered.

A test campaign was developed similar to the Orion P�U�R�J�U�D�P�¶�V approach to verification of vi-
sion-based navigation algorithms where a high resolution monitor was placed in front of the camera
such that it filled its field of view. Synthetic and real video with resolution as high as possible were
displayed that included the target vehicle with various backgrounds: an effectively solid back-
ground, a busy background, some with the target vehicle at various ranges and attitudes, and some
without the target vehicle at all. The traditional algorithm failed to differentiate the target from the
background in nearly all cases. The algorithm developed by UT was able to identify and bound the
target in nearly all cases with very few false positives. The UT algorithm uses a neural network to
identify the Cygnus in the image and then bound it. Within the bounding box, a traditional algo-
rithm is then used to attempt to outline the vehicle silhouette. The resulting region within the
outline is then centroided, which is then used to calculate the bearing relative to the center of the
image plane. The output of the debug mode of the software highlights several of these mechanisms
in action, as shown in Figure 5.

Figure 5. Debug GUI of the VizNav software showing the confidence of the Cygnus in the
upper left along with the bearing. The yellow box indicates the algorithm has located the

�&�\�J�Q�X�V���D�Q�G���W�K�H���E�O�X�H���G�R�W���O�D�E�H�O�H�G���µ�F�H�Q�W�U�R�L�G�¶���L�V���W�K�H���F�D�O�F�X�O�D�W�H�G���F�H�Q�W�U�R�L�G��

Navigation

The Seeker navigation system leveraged work done on Project Morpheus at JSC in the early
���������¶�V�������7�K�H���Q�D�Y�L�J�D�W�L�R�Q���D�U�F�K�L�W�H�F�W�X�U�H���F�R�Q�V�L�V�W�V���R�I���W�K�U�H�H���S�D�U�W�V�����W�K�H���,�0�8���3�U�H�S�U�R�F�H�V�V�R�U�����,�0�8�3�U�H�������W�K�H��
fast propagator (FASTNAV), and the Kalman Filter (NAV). IMUPre and FASTNAV each run at
50 Hz, while NAV runs at 5 Hz. This architecture is shown in Figure 6.

