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Abstract: Spruce beetle-induced (Dendroctonus ru�pennis(Kirby)) mortality on the Kenai Peninsula
has been hypothesized by local ecologists to result in the conversion of forest to grassland and
subsequent increased �re danger. This hypothesis stands in contrast to empirical studies in the
continental US which suggested that beetle mortality has only a negligible effect on �re danger.
In response, we conducted a study using Landsat data and modeling techniques to map land cover
change in the Kenai Peninsula and to integrate change maps with other geospatial data to predictively
map �re danger for the same region. We collected Landsat imagery to map land cover change at
roughly �ve-year intervals following a severe, mid-1990s beetle infestation to the present. Land
cover classi�cation was performed at each time step and used to quantify grassland encroachment
patterns over time. The maps of land cover change along with digital elevation models (DEMs),
temperature, and historical �re data were used to map and assess wild�re danger across the study
area. Results indicate the highest wild�re danger tended to occur in herbaceous and black spruce
land cover types, suggesting that the relationship between spruce beetle damage and wild�re danger
in costal Alaskan forested ecosystems differs from the relationship between the two in the forests
of the coterminous United States. These change detection analyses and �re danger predictions
provide the Kenai National Wildlife Refuge (KENWR) ecologists and other forest managers a better
understanding of the extent and magnitude of grassland conversion and subsequent change in �re
danger following the 1990s spruce beetle outbreak.
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1. Introduction

In the mid-1990s, North America’s largest recorded outbreak of spruce beetles (Dendroctonus
ru�pennis Kirby) killed nearly 5 million acres of forest on and around south-central Alaska’s Kenai
Peninsula [1]. Stands of White and Lutz spruce ( Picea glauca; Picea x lutzii) were particularly vulnerable,
with the boreal forest ecosystem on the peninsula’s western lowlands suffering mature tree mortalities
as high as 87% in some areas [2]. Kenai’s boreal spruce stands typically exhibit high tree densities with
individuals between 15�30 m in height and up to 60�90 cm diameter at breast height (DBH) [ 3], making
these forests more susceptible to the spread of spruce beetle infestation [4� 7]. Spruce beetle-induced
mortality results in foliar desiccation (�red phase�) before an eventual needledrop (�gray phase�),
thus opening the canopy and often permitting ecological succession towards more grass-dominant
types [8]. Such infestations, in addition to causing habitat loss, also harm the timber economy, detract
from regional tourism, increase risk of property damage due to treefall, and cause potential shifts in
the �re regime [ 9] (pp. 195�197). Beetle-speci�c mortality desiccates trees and has been observed to
cause greater likelihoods of uprooting or mid-tree breakage during �re than other causes of mortality,
making beetle-affected areas more dangerous for �re�ghters [ 8]. Decaying trees at any stage may
exhibit loose or weakened bark, cones, or branch materials that can easily be carried aloft during
�res and create increased risk of spotting [ 10]. Both beetle outbreaks and �res are of serious concern
to wildlife, vegetation, and other natural and urban resource managers in the region. Because the
Kenai Peninsula is one of Alaska’s most densely populated boroughs and is a cornerstone of the state’s
tourism economy, the ability to forecast and mitigate these disturbances is of high value to a variety of
local stakeholders.

Southern Alaska has been witnessing another rapid surge in spruce beetle populations since
2014 [1], and local climatic conditions are becoming increasingly favorable for both spruce beetles
and wild�re. The peninsula has become drier and warmer, experiencing a 1�2 �C temperature
increase over the last half-century [11]. Previous studies have not only suggested that increasing
temperatures correlate with �re danger, but also that multi-year spans of above-average summer
temperatures may positively correlate with risk of beetle infestation (providing enough suitable,
mature trees) [2,12]. Warmer, drier conditions increase the rate at which spruce beetles reach maturity,
remove climatic barriers to the spread of infestations, and weaken spruce trees’ natural defenses
against tree-killing bark beetles, such as the production of resin [ 13] (pp. 604�606). The beetle outbreak
of the mid-1990s differed notably from previous infestations in the region. Speci�cally, it was not
preceded by a clearly identi�able disturbance, such as a �re or windfall, which would have elevated
beetle populations and jeopardized the defense mechanisms of spruce populations [12] (p. 220).
Previous studies in both Alaska and the continental United States have suggested that droughts
or consecutive years of above-average temperatures can make spruce forests more vulnerable to
regional beetle outbreaks [12,14]. However, these studies were based on a relatively small sample of
recorded outbreaks.

Although some studies of the continental United States [ 15,16] have observed that wild�re
frequency and size are not signi�cantly increased by beetle-induced damages, others suggest that
the opposite may be true in Alaskan boreal forests where canopy loss often lends itself to grassland
conversion [17,18]. Increased grass cover, paired with the accumulation of dried foliage after beetle
outbreaks, creates conditions conducive to the surface fuel ignition typical of boreal forests [ 18].
A shifting �re regime is of particular concern in the Kenai region, as the peninsula’s white spruce
vegetation types are characterized by �re return intervals (FRIs) of approximately 400�600 years [ 17].
Even where grass encroachment is high, Kenai’s spruce forests have historically exhibited suf�cient
density to quickly recover after beetle outbreaks [ 19]. In recent years, Kenai National Wildlife Refuge
(KENWR) ecologists have observed this rate to have sharply decreased (D. Magness,pers. comm.). It is
unclear how the compounding threats of rising temperatures, increased wild�re frequency, and beetle
outbreaks will shape long-term ecological succession of vegetation on the Kenai Peninsula. However,
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we hypothesize that areas that have converted to grassland subsequent to spruce beetle-induced forest
mortality, as well as forest adjacent to these converted areas, will exhibit greater wild�re danger.

Shifts in the �re regime may be addressed through �re risk modeling. Previous works have
shown correlations between vegetation, or fuel, properties and increased �re risk through the use of
remote sensing. Many have used such methodologies to assess �re conditions at national or global
scales as well as for particular study areas. Others have focused on �re conditions and �re drivers
during speci�c historical �res. In a national-level assessment of �re danger, Burgan et al. proposed
the use of simpli�ed set of fuel models to derive a so-called Fire Potential Index (FPI) [ 20]. A similar
study by Chuvieco et al. proposed the use of a Fire Danger Index (FDI) derived from a weather danger
index, a human risk index and a fuel hazard component [ 21]. Their fuel hazards component approach
follows others in characterizing fuel properties through fuel models. Moreover, Stavros et al. [ 22]
used remote sensing to derive fuel maps, which they denote as categorical fuel classi�cations(CFCs).
The resulting CFCs were used to relate fuel conditions to �re behavior during the 2014 California King
Fire. Saglam et al. [23], used remote sensing data to determine �re risk and �re danger indices for
the Kourag forest in northwestern Turkey. Their resulting �re danger potential index integrated fuel
characteristics including species composition, stand crown closure and stages of stand development as
well as slope and insolation as representatives of terrain conditions. In a similar �re danger assessment,
Bisquert et al., investigated the use of various vegetation indices to assess �re danger for the Galician
and Asturian regions of Spain [ 24]. In this study we aim to incorporate relevant studies such as the
ones previously mentioned to correlate vegetation change to increased �re susceptibility in the Kenai
Peninsula through �re danger mapping. It is worth noting that although �re risk and �re danger
are often used interchangeably, some authors have advocated for distinctions between the two. For
instance, �re risk modeling approaches have been related to those which integrate ignition source
considerations whereas �re danger modeling approaches may be related to those assessing vegetation
status [25]. Hence in this study in order to capture correlations between vegetation, fuel, characteristics
and �re conditions we adopt what will hereby be called a �re danger modeling technique.

Our research aimed to develop a proof-of-concept for a �re danger modeling methodology
to quantify �re danger on the Peninsula and assess whether the relationship between spruce
beetle infestation and �re danger observed in the continental US holds true in coastal Alaska. We
conducted research to explore the potential utility of satellite imagery in characterizing the relationship,
if one exists, between grassland conversion and emergent wild�re danger in Alaskan boreal forests.
The project objectives were to: (1) build an optimized land cover classi�cation system tailored to
detecting forest-to-grassland conversion on this peninsula, (2) use this system to map grassland
conversion and detect land cover changes from 1995 (at the apex of the 1990s beetle outbreak) to the
present, and (3) develop a model for quantifying and mapping emergent wild�re danger resulting from
this conversion. The KENWR, administered by the U.S. Fish and Wildlife Service (USFWS), provided
in situ data and consultation for this research with the intent of better understanding ecological
trajectories in a shifting disturbance regime. Our research was conducted to support the KENWR’s
decision-making process to improve planning for �re control and ecosystem restoration efforts. This
research was performed to help land resource managers better predict changes in forest structure and
�re regime, not only protecting adjacent stakeholders in Kenai from the socioeconomic damages of
forest loss, but also yielding lessons that can be transferable to both Interior Alaska and Canada’s
Yukon Territory where large expanses of similar spruce-dominated boreal forest are present.

Study Area

The United States Geological Survey’s Geographic Names Information System (GNIS) [26] de�nes
the Kenai Peninsula as being located between 59� and 61�N latitudes and 152� and 147�W longitudes in
south-central Alaska (Figure 1a). Containing the Kenai Mountains along its eastern half, the peninsula
ranges in elevation from sea level to around 2100 m. Our study area (Figure 1b) was situated on the
�atter interior coast along the Cook Inlet (59 �350 to 61�30N latitude, 149 �580 to 151�530W longitude).
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These spruce forest lowlands contain most of the peninsula’s urban areas and have witnessed all of the
peninsula’s recorded �res greater than 1000 acres in size since 1940 [27]. The decision to exclude the
Kenai Mountains was intended to streamline our classi�cation process by minimizing non-vegetated
land cover. The study area is divided roughly in half by Tustumena Lake. The northern half contains
most of the KENWR and consists largely of terrain that is low-lying, marshy, and characterized by
the dominance of the more beetle-resistant, but �re prone, black spruce ( Picea mariana) [17] (p. 282).
The southern half, including the Caribou Hills region, is more topographically varied and dominated
by white and Lutz spruces which can be particularly vulnerable to beetle damage [3,17].
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Figure 1. (a) Location of the study area and the Kenai Peninsula within Alaska; ( b) Location of the
study area and the Kenai National Wildlife Refuge within the peninsula.

As mentioned in the above section, White and Lutz spruce-dominant forests on the Peninsula
have historically exhibited FRIs of around 400�600 years [ 17,28], while areas of the Kenai Peninsula
dominated by black spruce have historically witnessed shorter FRIs of around 90 years [ 29]. Dominance
of either spruce type is characteristic of late successional stages [3,28� 31], with post �re succession
progressing through moss, shrub/saplings, hardwoods, and �nally spruce dominance [ 3,30,31].
However, while black spruce dominance in Alaska has been observed to take about 90 years [31], an
analogous stage in Alaskan white spruce forests may take 150�300 years [30,32].

2. Materials and Methods

2.1. Data Acquisition�Classi�cation & Vegetation Transition

We used the United States Geological Survey’s EarthExplorer data portal (https://earthexplorer.
usgs.gov/) to access NASA’s Landsat Collection 1 Level-2 (on demand) atmospherically corrected
surface re�ectance imagery (Path 069, Rows 017�019). In selecting suitable Landsat scenes, a threshold
of 20% for cloud cover was used to identify scenes with low cloud cover for use in the project. Scenes
surpassing this threshold were queried out to minimize the amount of data lost due to eventual pixel
masking. The included imagery dates were selected to constitute a complete, yet concise, timeline of
Kenai’s ecological succession in the wake of the 1990s spruce beetle infestation. We chose scenes from
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20 August 1995, 9 June 2001, 27 May 2008, 12 May 2011, and 4 May 2014. Landsat 5 Thematic Mapper
(TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager
(OLI) scenes captured grassland conversion from the apex of the 1990s infestation to the present.
As a means of eventual validation for our land cover classi�cation process, we also acquired and
used supplemental high-resolution (30 cm) imagery from DigitalGlobe’s WorldView-3 (WV-3) satellite
sensor, via the NextView Licensing agreement with the National Geospatial-Intelligence Agency.

Partners at the KENWR provided ancillary vector data that include �re history data from 1989 to
the present and a series of points delineating 2015 land cover ground-truthed from sample plots. These
points were spread across the peninsula and identi�ed land cover type at each site as herbaceous,
shrubland, black spruce forest, white spruce forest, peatland or wetland. KENWR ecologists also
provided a provisional 2017 vegetation type classi�cation of the peninsula that is currently being
validated on the ground. This map had data for the entire peninsula, and gave the dominant tree
species in forested areas or categorized the land cover as shrubland, herbaceous, developed, barren,
water, wetland or peatland. For simplicity in our classi�cation, we consolidated many of the categories
given in the 2017 map. In addition to the WV-3 imagery, these layers informed the development
and validation of our land cover classi�cation system and served as a reference for our wild�re
danger model.

2.2. Data Acquisition�Fire Danger Analysis

The preliminary steps for �re model derivation involved identi�cation of appropriate time and
length scale and the selection of input variables. In establishing an appropriate time scale, we follow
prescriptions by Chuvieco et al. in considering our study as long term as it involves decadal vegetation
change and long term increased �re danger which require assessments of static risk factors [ 33]. Further,
because we are particularly interested in the effects of vegetation changes on increased �re susceptibility
in the Kenai Peninsula region, here we used, as described before, a �re danger modeling approach.
In order to derive a �re danger model which closely represents potential correlations between fuel
changes and �re trends, we followed recommendations by Andrews et al. [ 34] in choosing input
variables suitable for ‘�re environment’ type modeling. In this type of modeling, pre-�re conditions
related to fuels, weather and terrain are addressed in the modeling approach. By de�ning our �re
modeling approach in this way we were able to select input variables appropriate to our application:
aspect, slope, elevation, temperature, and vegetation.

Historical �res obtained from the Alaska FIREHouse database prepared by the Alaska Fire Service
for 2001, 2008, 2010, 2012 and 2014 together with 2014 MODIS �re pixels were selected as representative
�re-events for algorithm training. A 10 m resolution Digital Elevation Model (DEM) from the United
States Geological Survey’s (USGS) 3D Elevation Program (3DEP) was used to produce elevation, slope,
and aspect information. Classi�cations of land cover type derived from Landsat imagery, as explained
in Section 2.2.1, were used as the vegetation component, and monthly average temperature data,
at 1 km resolution, was acquired from the National Scenarios Network for Alaska and Arctic Planning
(SNAP) Database. As a comparison for both our classi�cation and �re danger systems, we incorporated
data from the USGS LANDFIRE Reference Database (LFRDB), containing classi�cations of vegetation
type, structure, disturbance patterns, and �re regime.

2.2.1. Data Processing�Classi�cation

Landsat spectral bands for three adjacent scenes were merged into a composite mosaic before
being clipped down to remove the peninsula’s Eastern mountains. To expedite the process of land
cover classi�cation, we created a mask from the pixel Quality Assessment (‘pixel_QA’) bands in the
Landsat download package to exclude cloud cover, cloud shadows, snow/ice, and signi�cant water
bodies. The removal of these pixels reduced raster processing times and streamlined classi�cation by
minimizing the interference of unwanted spectral signatures. In addition to the original Landsat bands,
we also calculated the Normalized Difference Vegetation Index (NDVI) to better differentiate between
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3.2. Fire Danger Probability Model

The logistic equation, indicated in Equation (2), estimates the coef�cients related to each factor
representing the change in “log-odds” with a binary variable.

Probability (Fire = 1) =
1

1 + e� z (2)

The coef�cients are estimated via the Maximum Likelihood Estimate (MLE) method, which
identi�es the coef�cients that make the log of likelihood as large as possible or as small as possible.
Therefore the Z factor for the logistic regression of the �re danger model becomes:

Z = � ((Aspect � � 0.0117) + (Slope� 0.6532) + (Elevation� 0.0011) + (Temperature�
� 0.1626) + (Vegetation� 0.2177) + 3.7711)

(3)

In Equation (2), P tends to 1, as Z in Equation (3) increases. Mathematically, the probability of
a �re-event tends towards 1 (�re), as Z increases, and towards 0 (no-�re) as Z decreases. Hence any
variable directly proportional to a �re-event has a positive coef�cient in Equation (2) and vice versa.

Vegetation in this case is a categorical variable; this means that numerical values are assigned
to represent each class. Increasing values are assigned based on the number of actual historical
�res in each category. For example, in a dummy scale ranging from 1–7, Barren class is assigned
a 1 and mixed forest is assigned a 7. Table 2 shows each variable corresponding coef�cient and its
corresponding signi�cance.

Table 2. Factor coef�cients and their statistical signi�cance.

Factor Coef�cient p > |z|

Aspect � 0.0117 0.000
Slope 0.6532 0.000

Elevation 0.0011 0.094
Temperature � 0.1626 0.000
Vegetation � 0.218 0.000

Using the ArcGIS Pro raster calculator, all raster variables were multiplied by their appropriate
weight and plugged into the logistic regression equation, resulting in the �re danger probability map
shown in Figure 6.

As described above, the Hold-Out method was used for validation. The data were divided
randomly into a 70–30% ratio for subsets as “model training” and “model validation” respectively.
A confusion matrix is a table setting used to describe the performance of a classi�cation model as
compared to reality. Using cut-off probability values, the threshold is selected at 0.5.

Table 3 below shows the class predictions obtained by the model with this cut-off value versus
actual values. If the model prediction and the actual value are concurrent, in our case a �re event,
the outcome is considered True Positive; if instead the prediction is not concurrent with an actual
event, it is considered a False Negative. Inversely, if the model prediction is positive but the actual
event is negative, it is considered False Positive; if instead the prediction is negative and so is the event,
the outcome is considered True Negative. Over all, the matrix illustrates that the model predicts cases
correctly at a 90% agreement.

The Nagelkerke R2 statistic in logistic regression is considered analogous to the coef�cient of
determination R 2. The pseudo R2 (range 0–1) describes the goodness of �t of the model, in this case
75%, which indicates a reasonable relationship between the predictors and the prediction. Furthermore,
the Receiver Operating Characteristics (ROC) curve constructed by plotting the true positive rate
(sensitivity) versus the false positive rate (1-speci�city) reveals a suitable accuracy as the curve follows
the left axis and the top border of the ROC space.

http://dx.doi.org/10.1016/j.foreco.2012.02.005
http://dx.doi.org/10.1890/15-1121
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Considering the ROC behavior, the Area under the Curve (AUC) is a measure of how the model
performs by presenting the trade-off between true and false positive proportions measuring the
accuracy of the analysis. An area of 1 represents a perfect test, while an area of 0.5 is considered a
failed model. The resulting AUC value for the training set is 0.944 and 0.928 for the validation set, this
shows that the distribution for both classes, �re and non-�re, is much better than if left to chance alone.
Figure 7 below shows the ROC curve and corresponding AUC values for the datasets.

Figure 6. Fire Danger Map.

Table 3. Model Confusion Matrix Probability of Detection (POD) and False Alarm Ratio (FAR) 1.

Predicted Not Predicted % Correct

Fire 500 True Positive 74 False Positive 93.4
No Fire 698 False Negative 49 True Negative 86.7

Percentage 90.6
1 The cut-off value is 500.

Figure 7. AUC 0.5 cut-off value. ( a) Test sample performance. (b) Validation sample performance.

http://dx.doi.org/10.1016/j.foreco.2006.02.042
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