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vertical motion range [1, 2] of any simulator in the 
world. The large travels in lateral (or longitudinal) and 
vertical enables the VMS to provide a realistic cueing 
environment which results in pilot control techniques 
that are similar to actual flight [2]. This level of fidelity 
enables the VMS to deliver high quality research data 
that correlates well to the real world.  

Over its 38-year history, the VMS has simulated a 
wide variety of aerospace vehicles and has supported a 
large number of research topics. Some areas of focus 
include handling qualities, guidance and display 
development, flight control design and evaluation, and 
simulation fidelity requirements. A large number of 
actual and conceptual aircraft have been studied, 
including various helicopters, Vertical/Short Take-Off 
and Landing and conventional aircraft, tilt-rotors, 
airships, spacecraft, high-speed supersonic transport, 
and the Space Shuttle.  
 Traditionally, vehicle math models simulated at the 
VMS were programmed by VMS engineers based on 
algorithms or block diagrams provided by the 
researchers. With advances in computing, vehicle 
modeling standards have evolved towards graphical 
development environments. Many in the aerospace 
simulation industry have adopted MathWorks products 
such as MATLAB® and Simulink® for model 
development. Researchers are now able to provide 
mature models which have been designed and tested in 
the Simulink environment.  In these cases, integrating 
the Simulink models directly into the VMS 
environment can eliminate programming errors and 
reduce the simulation implementation and validation 
time by weeks for a typical experiment. The challenge 
faced by VMS engineers was to find a means of doing 
this efficiently and accurately while keeping within the requirements of the facility  architecture.   
 As MATLAB became more popular, the demand for Simulink models to be integrated with simulation facilities 
with an existing and mature architecture increased. For example, at the Naval Air Systems Command at Patuxent 
River, the legacy high-fidelity aircraft simulation environment, CASTLE (Controls Analysis and Simulation Test 
Loop Environment), was integrated with Simulink in order to perform flight control system development work [3]. In 
that case the real-time aircraft simulation set-up and execution control was transferred to the MATLAB workspace.  
The NASA Langley Research Center simulation engineers took a different approach for the SAREC-ASV (Simulink
Based Simulation Architecture for Evaluating Controls for Aerospace Vehicles) [4] and the B-737 Linear Autoland 
Model [5] efforts. To provide an efficient and portable desktop simulation capability of sufficient fidelity to effectively 
derive and evaluate aircraft control laws and control system components, they developed a method whereby the 
simulation modules were programmed in Simulink and MathWorks Embedded Coder was used to generate C code. 
While valuable for desktop development work where the model will be exported to multiple stations, and development 
work will be done on only system components, this scheme is not appropriate for a piloted simulation where all model 
parameters must be accessible and tunable. Several real-time and non-real-time applications in academia and industry 

  -the-shelf simulation platforms [6-8]. None of these approaches, 
however, were suitable for the VMS due to its stringent real-time requirements necessary for pilot-in-the-loop 
experiments and the necessity to simulate diverse vehicles. A more suitable approach for the VMS is the MOSAIC 
(Model-O           

    -Time Workshop® (RTW) code to a 
predefined Application Programming Interface [9].  MOSAIC was used successfully in several aerospace projects in 
      [10].  Though this approach was 

        s real-time operating 

 
Fig. 1 Cut Away View of Vertical Motion Simulator 
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environment, which includes sophisticated real-time debugging and development tools, which give it the flexibility 
needed to meet research requirements. 
 To support piloted experiments, the      l- means that the 
execution of all software computations must be completed within a specific frame time 

real-time clock. The real-time system will trigger a timeout and stop running if that specific frame time is overrun. 
Simulink does not run in real-time [11, 12]. Instead, a pseudo real-time is achieved by including a pacer block which 
will slow the computations down to make the simulation time near the desired frame time. MathWorks provides such 
a pacer block, and more precise versions can be programmed by the user. However, since these pacers are not 
synchronized to a hard-real-time clock, the resultant frame rate can vary. Moreover, if the execution takes longer than 
one frame time, the pacer block will not help and, in this case, the simulation will actually run slower than real-time 
[12, 13].  

A method to integrate Simulink models at the VMS was developed and successfully implemented for a number of 
experiments over the past decades. To run Simulink models in real time for simulations with pilots or hardware in the 
loop, it is standard practice to convert it to C code  -Time Workshop, which is now called 
Simulink Coder. Typically, at the VMS, this auto-generated code is compiled into the host executable. In this way the 
VMS real-time environment can control the clock. Without this control, which guarantees hard real-time execution, 
the model may lose synchronization and consequently would not deliver the required fidelity. Many facilities that 
require real-time simulation use this approach [4, 12-14]. However, the conversion and integration process can be time 
consuming and cumbersome, especially during development when model modifications are frequently required. The 
generated code is difficult to debug and gaining access to parameters for tuning can be tedious. Moreover, some 
Simulink blocks are not supported by Simulink Coder. 

To minimize model integration time and support a recent experiment whose Simulink model could not be used to 
generate C code, the VMS facility capabilities were expanded to allow a Simulink aircraft math model to run in the 
   on an external device. This is the first time a vehicle model has executed in 
Simulink for a piloted real-time simulation at the VMS. This experiment also required flight hardware in the loop. 
Communication between the host computer, Simulink math model, and the flight hardware devices required special 
data-transmission methods and new interface software. The interconnections and the architecture design were unique 
to this VMS experiment, making the interface design challenging. Nevertheless, running the model in the MATLAB 
environment in this way worked well. The software developed and lessons learned during this simulation can be 
applied for future experiments.  

This paper will describe the method by which this experiment was accomplished. An overview of the VMS will be 
provided first. Subsequent sections will discuss the development work required, and the challenges and lessons learned 
to integrate and run a Simulink model in the MATLAB environment for a real-time piloted hardware-in-the-loop 
simulation experiment at the VMS. 

II.  The Vertical Motion Simulator  

The VMS is a large amplitude, uncoupled, six-degree of freedom, flight simulator that delivers unmatched vertical 
and lateral travel. The facility  architecture, both the hardware and software, was designed to be adaptable to support 
diverse aeronautical investigations. An in-house developed software environment provides a robust and flexible set 
of development, debugging and execution tools which supports rapid simulation development and enables efficient 
testing. 

A.  Hardware 
A wide range of adaptable hardware components are available which can be put together in various ways to 

accurately represent most any vehicle, real or notional. Figure 2 shows the two-seat cab and controllers that were used 
for this experiment.   
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1. Computer Hardware 
 The VMS computer system 
architecture is comprised of a 
host computer, on which the 
aircraft math model executes, 
along with a number of other 
separate processors. The host 
computer, a 1GHz Hewlett 
Packard Alpha running Open 
Virtual Memory System 
(OpenVMS), provides the 
executive and real-time 
Input/Output (I/O) control 
functions, the interface for 
executing and debugging 
models, and control of the other 
processors (visual, motion, etc). 
The host and operating system 
are currently being upgraded to 
a Linux based system. Other 
computers include an Image 
Generators (IG) to produce the 
outside world visual scene, and 
graphics engines to create the cockpit flight instruments and lab engineering displays.  
 

2. Communication Devices 
Communication between the host and attached computational processors is handled over a real-time network using 
Ethernet protocols. An in-   , referred to as External I/O, or XIO, is typically used for cab 
flight instruments, lab engineering displays and auxiliary processing. A CAMAC (Computer Automated Measurement 
and Control) real-time data acquisition system by Kinetic Systems is used to provide an interface for cockpit or lab 
analog and discrete controls.  A SCRAMNet (Shared Common Random Access Memory Network) is used for 
communication with the Motion Control Unit and the pilot control loaders.  

B.  Software  
Like the hardware, the VMS software has been designed to support a flexible and rapid development capability. 

This is achieved by way of a set of software components, the backbone of which is the in-house developed MicroTau 
real-time environment [15]. MicroTau provides effective debugging and monitoring tools for developing and testing 
simulation models. Furthermore, it provides the control and execution functions to enable executing simulation models 
in real-time piloted experiments. It controls the simulation I/O processors, performs the aircraft model calculations 
and supplies the user interface to the real-time simulation.  

Another important component is the software library which contains various modules that perform model-
independent functions such as the aircraft equations of motion calculations, driving the cockpit visual scene, 
controlling the motion system and recording electronic data. Typically, a simulation consists of the model-independent 
library routines as well as other modules specific to the vehicle, such as the aircraft aerodynamic math model or the 
control system. Vehicle-specific model software can be developed at the VMS or by the visiting researchers.  Figure 
3 below depicts these basic software components. Although the VMS library and legacy code is written in FORTRAN, 
all major languages and software environments are supported including C, FORTRAN, Ada and Simulink. A number 
of Simulink models have been used at the VMS over the last decade. 

The Simulink models that have previously been integrated at the VMS range in size and complexity, from a single 
guidance module [16] to a complete vehicle model including functional gears, turbulence model and fully moveable 
nacelles [17]. In each of these cases, Real-Time Workshop, now called Simulink Coder, was used to generate code 
from the Simulink diagrams which was then integrated into the host computer software.  

During one experiment, a prediction algorithm ran in the Simulink environment on an external processor. Since 
this Simulink component was only used to drive symbols on a display and was not critical for flight, there was no 
requirement to run it in real-time.  For the current experiment, however, the vehicle and control system models, which 
are critical to piloted flight, had to be run in the Simulink environment. This requirement presented a challenge for the 

 
 

Fig. 2 Advanced Rotorcraft Two-Seat Cab, Flight Hardware and Controllers 
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engineers as well as a change to the existing integration methods and standards. The methods by which this was 
accomplished, the development work required, and the problems solved will be discussed after a description of the 
experiment.  

 

III.  Experiment Description 

The primary objective of this experiment was to evaluate Advanced Flight Control Systems (AFCS) for rotorcraft 
in a real-world, high-workload environment and evaluate pilot performance under realistic, full-mission scenarios 
        To satisfy this goal, it was 
necessary for the math model to produce a realistic helicopter response, as well as to provide the rapid modification 

 . For these reasons, the best option available to support this experiment was using 
a Simulink math model which included a mature helicopter simulation, as well as several new stability augmentation 
systems, auto-pilot, and flight director guidance. Likewise, another important component of this experiment was the 
use of advanced Electronic Flight Instrument System (EFIS) displays and realistic control and communication devices. 
Communication between the host computer, Simulink math model, and the flight hardware devices required special 
data-transmission methods as well as new interface software. The interconnections and the architecture design were 
unique to this VMS experiment, making the interface design challenging. A high-level diagram showing the hardware 
and software components is shown in Figure 4. Each component will be discussed, starting with the Cab Hardware, 
indicated by the green block on the right. 

A. Experiment Hardware 
Advanced flight deck EFIS displays, while informative and offering multiple functions, can be cumbersome to use 

and may increase the pilot workload at certain times, such as after a missed approach when they must be programmed 
to an alternate airport. They typically consist of multiple pages that supply a Primary Flight Display (PFD), Multi-
Function Display (MFD) and Engine Indicating and Crew Alerting System (EICAS) display. The focus of this study 
was pilot workload during up-and-away flight in Instrument Flight Rules (IFR) conditions using realistic, full-mission 

      om controlling the helicopter. Consequently, 
an important component of the experiment was the use of advanced cockpit displays and realistic control and 
communication devices. To that end, actual flight hardware, including two Commercial Off-The-Shelf (COTS) EFIS 
Integrated Display Units (IDU), a Flight Control Computer (FCC), Pilot Control Panel (PCP) and Remote Bug Panel 

 
Fig. 3 Vertical Motion Simulator Software Structure  
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1. The Simulink math model, which ran on the Linux computer (the blue block in Figure 4) included the 
Vehicle Model, Control System and Interface modules. 

2. The flight hardware interface program, which also ran on the Linux computer. 
3. The primary executable (the lavender block in Figure 4) which ran on the host computer, included the VMS 

real-time operating system, as well as the graphics and motion drivers. 
Each of these software components is discussed in the sections below. 
 

 
Fig. 6 Simulink Math Model Diagram 

 
1. Simulink Math Model 
The math model was provided by the researchers and delivered in Simulink. The Simulink math model, shown in 

Figure 6, included the aircraft model, Advanced Flight Control System (AFCS) components, and the VMS interface 
S-function.  The S-function (system-function) is a mechanism by which Simulink blocks may reference non-
MATLAB language computer code.  When such code blocks are converted to S-functions, they can be referenced by 
Simulink during the link stage. While different s-function types are available, the Level-2 S-function supports the 
superset of all features and as such is typically the one used. However, to generate code from a Level-2 S-function, a 
Target Language Compiler (TLC) file for the S-function must first be written, which was out of the scope of this 
effort. 

The aircraft model was a generic helicopter simulation developed to produce a realistic rotorcraft response while 
being computationally efficient and configurable to any specific helicopter by means of a set of variable parameters. 
It was written in C++ and compiled into a Simulink S function and is represented as the blue block on the right in 
Figure 6. The AFCS blocks incorporated a variety of Stability Augmentation Systems (SAS) options, auto-pilot and 
flight director guidance, and are shown as red blocks in the center of the diagram.  Last, the Simulink/VMS interface 
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block is shown in green in the lower left. Since the delivered vehicle model was written in C++, C code could not be 
generated, which is the standard VMS integration method. Consequently, it was decided to run the Simulink math 
model in the   ATLAB environment on an external Linux computer, making this the first time the 
vehicle model has run in Simulink for a piloted real-time simulation at the VMS. The method by which this was 
accomplished, and the development work required, are discussed in the sections below.  

Despite initial concerns that the model may not run in real time or that synchronization may be lost, this method 
worked well and provided several advantages. Namely, model changes could be made to the Simulink math model on 

          

enabled the engineering team to copy the exact version of the math model into a desktop version of the simulation 
which was used for pilot training. This provided confidence in the training simulator integrity. 

The Simulink math model communicated with the host via Ethernet XIO at 100 Hz. Due to reasons that will be 
discussed in the Challenges section below, the restriction that stops the simulation if a frame overrun occurs was 
disabled, and the hardware clock was utilized for I/O synchronization between the host computer and the Linux 
computer and monitored overruns when they occurred. The control inputs from the cab were processed on the host 
and, at the end of the frame, sent to the Linux computer. These signals were used by the Simulink math model to 
update the vehicle state and SAS commands during the subsequent frame, and then returned to the host where they 
were processed to drive the motion, visuals and displays.  Because communication happens on fixed frame boundaries, 
this arrangement incurs a minimum of two frames of delay, or 20 millisecond (ms), between the cab outputs and the 
resultant motion and visual updates. As the primary focus of this study was workload during up-and-away flight, this 
delay was deemed acceptable by the researchers.     
 The initial version of the Simulink math model included numerous occurrences of, and calls to, Windows-specific 
code, which would not compile or run on the Linux computer. These all had to be replaced with Linux compatible 
software, some of which did not exist and had to be programmed from scratch. Many other details, such as the units 
and ranges of the inputs and how to set the initial conditions, had to be coordinated between the math model, Simulink 
interface and host interface to ensure accurate and appropriate communication.   

One such change was the addition of memory blocks, which implement a one-time-step delay between the math 
model (vehicle and flight director) outputs and the VMS Interface S-function. These were needed to break algebraic 
loop errors. This change fixed the Simulink errors, but resulted in one additional frame delay, making the expected 
minimum delay incurred ~3 frames, or 30 ms. 

Another change to the Simulink diagram was the addition of the block to perform the I/O between the VMS host 
and the vehicle and control system models. The Host-Simulink I/O Interface consisted of two components that were 
written in-house and ran on the Linux computer as shown in Figure 4: an interface module written in C (VMS_Host.c) 
and a configuration file (VMS_Host.cfg). The configuration file defined the host node name and the input and output 
port numbers and widths. Having multiple ports of differing sizes had not been done before at the VMS and required 
some research. The interface module defined the Simulink Level-2 S-Function that performed the I/O interface 
between the VMS host and the Simulink math model. It declared the function name, loaded the configuration file, and 
called the Simulink math model entry points, such as mdlStart and mdlUpdate. The S-Function C routine was 
compiled, along with the VMS XIO library, into a MATLAB (Linux 64-bit) binary MEX (MatLab EXecutable) file. 
A binary MEX file is a dynamically linked function comprised of a compiled C or FORTRAN subroutine that can be 
loaded and executed within MATLAB as if it were a built-in function. In this case, the interface C routine MEX file 
was linked to a level-2 S-function block in the Simulink math model. A Simulink S-function block was added into the 
delivered Simulink math model and connected to the MEX function by setting the S-function name to that declared in 
the MEX file. This S-function interface block is represented in Figure 6 as the green block in the lower left. The 
Simulink math model, including the Simulink I/O interface block, ran on the Linux computer, along with the hardware 
data marshalling executable. In order to run correctly, the Simulink math model required some input data from the 
flight hardware. 
 

2. Linux Computer Flight Hardware Data Marshalling Software 
Since some devices were flight hardware and not designed for a simulator, interfacing with them was challenging. 

The host sent data signals through XIO at one rate. The hardware interface had to decimate these data and package it 
for several different devices, each of which required data at different rates and formats, some at very high baud rates. 
For example, the ARINC 429, a specification for transferring digital data between avionics, was required for data 
transmission with the EFIS displays. To sup   ata Bus 
Interface box was obtained which did much of the communication scheduling. Nevertheless, a significant amount of 
new code was required to handle the data transmission and marshalling logic. This software was written in C and ran 
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they were required to file flight plans, communicate with Air Traffic Control (ATC) and operate Electronic Flight 
Instrument Systems while flying take-offs and missed approaches. 

Occasionally the Simulink model did loose synchronization with the host, but synchronization was quickly 
restored so that the run could continue without the need to reset. All experiment evaluation runs were reviewed to 
determine if any undetected frame overruns occurred. For most runs, many of which were on the order of an hour 
long, no overruns were observed. Eight of the 100 evaluation runs encountered delays of 2 or more frames greater 
than the expected 3 frames. During these runs, this additional delay occurred on the order of twenty to fifty times over 
the full course of the run, for a maximum of 0.03% of frames with unexpected delays. 

Figure 7 shows the average Linux computer math model execution time for each evaluation run, the values for 
which were about 0.9 ms, +/- 0.4 ms which is well below the 10 ms frame time. Figure 8 shows the maximum Linux 
computer model execution time per run, which ranged between approximately 2 ms and 10 ms. When the execution 
time approaches 10 ms, this can result in an extra frame delay. In order to review the Simulink diagram or MATLAB 
files during the experiment, the Linux computer windows were sometimes not left minimized, and the mouse was 
used. This is a likely cause for the near 10 ms maximum execution times. In order to run in hard real-time, the model 
execution time would have to remain below 10 ms, for the entire run.  
 

 
Fig. 7 Simulink Math Model Average Execution Time (ms) Per Run 

 

 
Fig. 8 Simulink Math Model Maximum Execution Time (ms) Per Run 
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Three times toward the end of the experiment the model lost synchronization with the host during an evaluation 
run. This was not a problem with the Simulink model execution. Instead it appeared that the host lost total 
communication with the Linux computer, which caused the simulation to freeze for a number of seconds. It appeared 
that the X-Server window on the PC being used to connect to the Linux computer, which is controlled by the PC 
process, had gone to sleep. Communication was reestablished by waking up the X-Server window on the PC by cycling 
the power button of the PCs monitor. After doing this, synchronization was reestablished and all runs then continued 
without incident. Figure 9 shows an example of such a run where the simulation lost synchronization in this way. The 
top plot of Figure 9 shows the Linux computer model execution time. The lower plot shows the number of frames for 
which the model update to the host was delayed, as determined by a real-time counter on the host computer.  By 
comparing the model execution time, which never exceeded 4.5 ms, to the very large 53 frame delay, one can see that 
the overrun was not caused by the math model execution but by some other event in the system on the Linux computer. 

 
Fig. 9 Linux Math Model Execution Time and Number of Frames Delay Incurred for one Run 

 

V.  Challenges 

This section discusses some of the challenges encountered when the Simulink environment with the VMS real-
time architecture. The host frame rate ran at a consistent 100 Hz or 10 ms. The execution time of the Simulink math 
model on the Linux computer was, on average, about 1 ms, which is well within one frame. Initially, an attempt was 
made to run the Simulink math model synchronously with the host whereby, if the execution time exceeded the defined 
frame time, an overrun would occur and the experiment would stop running. Occasionally, however, it spiked up to 8 
or almost 10, even on rare occasions going over 10 ms. When running synchronously, each large (near 10 ms) 
execution spike would cause a frame overrun, making this arrangement impractical for the length of runs planned. For 
this reason, it was agreed that best option was to run the Simulink math model asynchronously and rely on the hardware 
clock to ensure real-time I/O. Since the execution time spikes only occurred rarely, and for one frame at a time, it was 
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not noticeable to the pilot and was deemed acceptable by the researcher. An example plot of the Linux computer 
model execution time for a typical evaluation run is shown in Figure 10 below. 

A. Latencies 
During initial fixed-based development, a latency between the host and math model response was observed that 

would incrementally increase to the point where it caused instabilities with the autopilot. The latency slowly increased 
from the expected 3 frames up to 13 frames (resulting in response delays of 0.13 seconds, or 10 frames more than 
expected) where it would remain until the model was re-synched by stopping and re-starting the simulation. In an 
effort to isolate the cause of this problem, some diagnostics were used to observe the packet transfer rate. It was 
determined that the Simulink math model data were not always sent on a consistent basis. It would, in fact, not send 
any data for a few frames, and then would send several packets at once. The XIO logic, however, which assumed a 
real-time data stream, employed a First In, First Out (FIFO) processing method such that all packets were used in the 
order received. It was surmised that the observed latency was due to the Simulink math model sometimes taking longer 
than one frame to complete execution, an occurrence that resulted in packets incrementally building up in the buffer. 
The XIO buffer was flushed after 10 frames, hence the observed maximum of 13 frame latency. The XIO logic was 
subsequently modified such that only the most recent data was used and the rest was ignored. Though this was not a 
(hard) real-time solution, it did fix the incremental latency problem.  

 

 
Fig. 10 Example of Simulink Math Model Execution Time (ms) for a typical run  

 
When the Simulink math model was initially used to drive the Out-The-Window (OTW) visual scene, it was 

observed that the visuals were irregular and jagged. This was determined to be a result of the precision of the inputs 
to the OTW drivers. The Simulink math model output aircraft position in double precision latitude and longitude. 
Double precision is needed when using latitude and longitude to drive the visuals since the position changes between 
frames for a vehicle order of magnitude happens in the lower significant figures. However, since XIO only transferred 
floats, the doubles were automatically downcast to single precision, which resulted in the OTW visual s jumping. The 
XIO interface was expanded to handle double precision and this did provide smooth visuals.   

Unfortunately, some vehicle response latency still occasionally occurred. The team learned that, when running a 
Simulink math model, MATLAB launches a large number of processes, some of which run at a lower priority causing 
the latencies. The team researched ways to set thread priorities to ensure all necessary Simulink processes were given 
a high priority and thereby guarantee real-time execution; however, a solution was not found. The best option was to 
minimize the number of MATLAB processes, and ensure the Linux computer math model execution time stayed 
safely below the frame rate. This was accomplished during experiment operations by minimizing all windows on the 








