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(a) Integer design space as seen by the EGO-like approach(b) Continuous design space as seen by the gradient-based
optimizer

Fig. 4 AMIEGO solves two di�erent subproblems for the 2-D Branin function

the hyper-parameters requires the user to solve for a separate optimization problem either using a global search
technique such as a genetic algorithm or employing a multistart approach with a gradient-based approach. To
overcome this challenge, AMIEGO combines Kriging with the Partial Least Square (PLS) regression as suggested
by Bohlel et al.[13]. Combining Kriging with PLS regression, it is possible to signi�cantly reduce the number of
hyper-parameters i.e., the design-variables in the surrogate training optimization step. The method constructs a
new covariance kernel function with a reduced number of hyper-parameters based on the information provided
by the PLS technique. This feature in AMIEGO helps keep the computational cost associated with building the
surrogate nearly independent of the number of integer design variables of the original problem.

� Step 4: This step �nds an integer solution of the original problem by maximizing the expected improvement
function. As opposed to �nding a continuous solution as in the traditional EGO algorithm [3], this step �nds a
solution that also satis�es the integrality constraints. This integer solution in turn, is the solution to the integer
design space and is the new in�ll point that appears as a parameter to the continuous optimization in step 2. The
problem formulation for this step appears below:

Maximize
xI

EI„xI ”

Subject to xI
lb � xI � xI

ub
(2)

Several optimization algorithms have di�culties maximizing the expected improvement (EI) function, due to its
highly nonconvex and multimodal nature. Fewer algorithms are e�ective in �nding the near-global solution to
this subproblem. Most of the literature uses evolutionary-based algorithms like a genetic algorithm to maximize
the expected improvement function. Furthermore, as we seek to obtain an integer solution, the subproblem
becomes a Mixed Integer Non-Linear Programming (MINLP) problem. However, this auxiliary MINLP problem
is computationally cheaper than the original expensive MINLP problem, given it works on the surrogate built in the
previous step. Also, for the objective ‘Expected Improvement’ function, after some mathematical simpli�cations,
it is possible to obtain its gradient and the Hessian information, which can be exploited by a mathematical
programming solver for a global solution [3]. AMIEGO provides the user with the option to use a GA or the
newly developed gradient-based Branch-and-Bound approach available within OpenMDAO [32] to solve thisEI
maximization problem.
As mentioned earlier, the original version of AMIEGO identi�es only one in�ll point per iteration, designed
to cater to problems that require high performance parallel computing in solving the inner-loop continuous
optimization in step 2. However, for problems that do not require parallel computing capabilities to solve a single
continuous optimization problem, it may be desirable to sample multiple integer/discrete points and perform the
continuous optimization in step 2 of the algorithm in parallel. The premise of this paper is to introduce this new
capability in the AMIEGO algorithm, and let the users have the option to decide how many in�ll points they desire
per AMIEGO iteration. The details about the new multiple in�ll sampling criteria appears in the subsequent

7

http://crossmark.crossref.org/dialog/?doi=10.2514%2F6.2019-2356&domain=pdf&date_stamp=2019-01-06


It is intuitive to see that Case 1 takes longer to converge as compared to other cases. This is expected, because in
Case 1 we are sampling only one point per AMIEGO iteration, whereas we are sampling multiple points in other cases.
However, they all undertook the same number of data (discrete) point evaluations. Also, for cases (2-4) with number of
samples greater than 1, they did better (quality of �nding a good solution) than the case that samples just one point per
iteration. This is because in cases 2-4, we uniformly sample points from clusters, in sequence, that are good across all
three objectives (objective 1: balance, objective 2: explore, and objective 3: exploit), thereby having a good mix of
points sampled uniformly across the entire design space.

2. Di�erent starting number of points
Next, we varied the initial number of starting points generated using Latin Hypercube Sampling (LHS), but kept

the number of in�ll sample points �xed to 12 per iteration. We also kept the total computational budget limited to a
maximum of 300 integer data point evaluations. Figure 9 shows the convergence of the AMIEGO-MIMOS for di�erent
numbers of initial starting points. As seen from the �gure on the left, di�erent starting point sets lead to di�erent
starting "present best solution" (PBS) with a general trend (though not always) that fewer initial samples lead to worse
starting PBS. Overall, all the cases converged to close-by values with the worst �nal solution from 151 points case
(4996.3 lbs) and the best �nal solution from 101 points case (4968.2 lbs).

(a) Covergence plot for di�erent initial number of data points (b) Total evaluated data points when best solution found

Fig. 9 AMIEGO starting from di�erent number of initial sample points

The �gure (Fig. 9(b)) on the right shows the total number of discrete data points (total number of inner continuous
optimization in step 2) needed to obtain the �nal best solution across the cases. This is the best solution after which, even
though the algorithm continued to run, there is no further improvement to the present best solution. Initial sample size
of 31 yields the fewest data point evaluations, while 151 starting number of sample case yields the maximum number of
data point evaluations. This implies that one probably does not need a large number of initial starting samples* .

Next, we compare the performance of MIMOS and the CPTV in�ll criteria. Figure 10(a) shows the �nal solution
obtained using the two di�erent in�ll strategies. For the same set of initial samples and the computational budget,
AMIEGO-MIMOS consistently obtains a better solution across all the 6 di�erent cases when compared with the
AMIEGO-CPTV approach. Figure 10(b) shows the convergence plot of the MIMOS and CPTV strategies for the case
with 31 starting samples. After the �rst drop, CPTV approach could not �nd any further improvement to the PBS.

B. Application II: Wing topology optimization problem

1. Problem description
After solving the 10-bar truss problem using AMIEGO-MIMOS/CPTV, we next solve the wing topology optimization

problem. A brief overview of the topology optimization problem setup is given here. The wing under consideration is
the Common Research Model (CRM) developed in Ref. [37], a generic transport con�guration with a wing span of 58.7
m, a mean aerodynamic chord of 7.0 m, a taper ratio of 0.25, a sweep angle of 35� , and a cruise Mach number of 0.85.
The aluminum wingbox is composed of upper and lower skins, a leading and trailing spar, ribs, and T-shaped sti�eners.

* These runs terminated once they reached the maximum allowed data point evaluations of 300; changing this limit and allowing the algorithm to
run longer could lead to a di�erent number of total data point evaluations.
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(a) Final solution obtained using MIMOS and CPTV in�ll strategies(b) Convergence plot for the case: initial sample size=31

Fig. 10 Comparison between AMIEGO-MIMOS and AMIEGO-CPTV

The goal here is to simultaneously optimize the layout/topology of this wingbox (in terms of rib and skin sti�ener
placement) and the sizing details of each component. This is graphically shown in Figure 11, where the outer
surrogate-based optimizer is expected to design the internal layout through design variables which govern the number of
skin sti�eners, the spatially-dependent spacing (pitch) of those sti�eners, and their orientation relative to the leading
edge„ . Similar design variables exist for the ribs. If only straight ribs and sti�eners are desired, then the number of
topology design variables is 10; if curvilinear members are to be designed, the number of variables increases to 24. The
current study includes only the straight ribs and sti�eners; curvilinear will be considered as part of future work.

The inner continuous optimizer (step 2) then sizes each of the wingbox components, in terms of the thickness of
each shell member, the thickness of the T-sti�eners attached to each shell, and the height of those sti�eners. Several
sizing �zones" are allocated down the span for each component (i.e., �ve total zones for the upper skins from root to tip),
resulting in 75 total sizing design variables. The sizing optimization considered here is a static aeroelastic optimization,
where the structural mass is minimized subject to constraints on stresses and buckling, spread over a series of trimmed
aeroelastic constraints totaling to 22 problem constraints. The problem formulation for the wing topology optimization
problem appears below.

Fig. 11 An example of adding both topological detail to a transport wingbox, and structural sizing details.

A more detailed description of the problem formulation appears in Ref. [15].This type of bi-level topological/sizing
wingbox design has been considered before (see for example Ref. [28]), but all past works have utilized relatively
ine�cient global optimizers that rely on evolutionary algorithms; the surrogate-based optimizers described above is
expected to locate better designs with much fewer computational resources. Recently, Ref. [15] addressed this problem
using an AMIEGO-CPTV-like approach starting with 239 initial samples, and identi�es 15 in�ll points per iteration.

„ Some of the variables in the outer optimization are continuous in this problem. Internally they are made discrete within AMIEGO with a
resolution of 0.1
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