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Abstract

Over the last few years progress has been made in the velocity dependent 
collision probability problem.  Recent progress in this problem has been 
approached via integration of the probability flux into the surface of the 
combined hard body object.  The algorithm presented uses the surface flux 
approach and is designed to compute the collision probability rate between 
two objects given their time dependent states and state error covariance 
matrices.  With regards to the computation of the collision probability (Pc) 
rate, two major differences exist between the development of this algorithm 
and the usual Pc algorithm.  First, the shape of the at-risk volume is assumed 
to be a cube rather than a sphere.  The size of the cube is chosen so that it 
circumscribes the usual hard body sphere chosen for the spherical Pc
problem. This will result in half the length of a side of the cube being equal to 
the hard body radius (HBR) of the sphere.  Second, it is assumed that the HBR 
of the cube is much smaller than the smallest combined position uncertainty 
(σmin > 5*HBR) at each time point of evaluation.  This is necessary as the 
actual collision probability calculation is based on a first order, small variable 
expansion in the position components of the Gaussian probability density 
function.  This leads to the collision probability rate being to second order in 
the combined HBR.  The collision probability rate is in a concise, closed form 
containing exponential and error functions.
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History of the Foster 2D Pc

• STS (Space Shuttle) orbital debris collision risk concern arose 
following the Challenger accident
– No specific cause, just part of enhanced safety investigations
– Problematic as GP state uncertainties for debris were not available
– A simple, rectangular box centered on a Shuttle was selected for 

collision avoidance clearing

• About the same time, development for Space Station 
Freedom was in progress
– Unlike with the Space Shuttle program, Freedom would be in orbit 

continuously for years
– This elevated the potential collision risk with cataloged orbital debris
– Lee Foster, Herb Estes and Mark Powell developed the 2D Pc concept
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2D Pc Assumptions

• State vectors and position vector error covariance matrices 
are available for both objects at the time of closest approach 
– The two solutions are uncorrelated
– Uncertainties (position only) are multivariate Gaussian

• Duration of the close approach event is only a few seconds
– Hypervelocity passes involving relative speeds around 10-15 kps
– In the vicinity of the close approach trajectories are straight lines
– Relative position uncertainty moves in the relative velocity direction
– Combined relative position uncertainty passes the point of closest 

approach, +nσ to -nσ, in a time too short to allow for the position 
error covariance matrix to change size, shape or orientation

• Position error sigmas are small compared to orbital curvature
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Standard algorithm for the 2D Pc

𝑃𝑃𝑐𝑐 = �
𝑒𝑒−0.5 𝑟𝑟−𝑟̅𝑟 𝑇𝑇𝐶𝐶−1 𝑟𝑟−𝑟̅𝑟

2𝜋𝜋 𝐶𝐶
𝑑𝑑𝑑𝑑

Where:
r:  generalized relative position in the collision plane
𝑟̅𝑟:  mean (center) position of the probability density function
C:  2D position error covariance matrix in the collision plane
A:  circular at risk area defined by the hard body radius, HBR
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Closed form algorithm for the 2D Pc

𝑃𝑃𝑐𝑐 = ∫−𝑏𝑏
𝑏𝑏 𝑒𝑒

−0.5 �𝑥𝑥−�𝑥𝑥 2
𝜎𝜎𝑥𝑥2

2𝜋𝜋𝜎𝜎𝑥𝑥
𝑑𝑑𝑑𝑑 � ∫−𝑏𝑏

𝑏𝑏 𝑒𝑒
−0.5 �𝑦𝑦−�𝑦𝑦 2

𝜎𝜎𝑦𝑦2

2𝜋𝜋𝜎𝜎𝑦𝑦
𝑑𝑑𝑦𝑦

𝑃𝑃𝐶𝐶 =
𝐸𝐸𝐸𝐸𝐸𝐸 �𝑥𝑥+𝑏𝑏

2𝜎𝜎𝑥𝑥
−𝐸𝐸𝐸𝐸𝐸𝐸 �𝑥𝑥−𝑏𝑏

2𝜎𝜎𝑥𝑥
2

⋅
𝐸𝐸𝐸𝐸𝐸𝐸 �𝑦𝑦+𝑏𝑏

2𝜎𝜎𝑦𝑦
−𝐸𝐸𝐸𝐸𝐸𝐸 �𝑦𝑦−𝑏𝑏

2𝜎𝜎𝑦𝑦

2

Where
𝑥𝑥, 𝑦𝑦 :      position components, 2D covariance principal axis frame
𝑥̅𝑥, �𝑦𝑦 :      mean (center) positions, principal axis frame
𝜎𝜎𝑥𝑥,𝜎𝜎𝑦𝑦 :  standard deviations of the position error, principal axis frame
b :          characteristic length (half length of the side of the square)

(if b=HBR, over estimate of Pc; b=0.5·HBR· 𝜋𝜋 best on average)
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A General 3D (Velocity Dependent) Pc Problem

• State vectors and state vector error covariance matrices are 
available for both objects during the interval of closest 
approach, which may be arbitrarily defined.
– The two solutions are uncorrelated
– Position and velocity uncertainties are multivariate Gaussian
– Correlations between any two state elements may exist

• No restriction on relative velocity (speed)
• No restriction on linear/nonlinear nature of the individual or 

relative trajectories
• Position error sigmas are small compared to orbital curvature
• Small object restriction for the algorithm presented here:  

HBR < (smallest position sigma)/5 
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3D (Velocity Dependent) Pc Problem (approach)

• Solution is approached as a probability density flux problem
• Proceed very much like solving a control volume problem in 

fluid mechanics or aerodynamics
• Rate of accumulation of probability is determined by the 

probability flux through the surface (inward only, this goes 
directly to how a collision is defined)

• Make axis and control volume choices for convenience and to 
simplify the problem

• Consider how to approximate and solve the resulting problem
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The small object 3D Pc algorithm

Step 1:  Advance the vectors and matrices to the next time step.
Step 2:  Compute the relative position, velocity and state error 
covariance matrix:

𝐑𝐑 = 𝐑𝐑2 − 𝐑𝐑𝟏𝟏 = X Y Z
T

𝐕𝐕 = 𝐕𝐕𝟐𝟐 − 𝐕𝐕𝟏𝟏 = U V W
T

𝐂𝐂 = 𝐂𝐂𝟐𝟐 + 𝐂𝐂𝟏𝟏 = 𝐂𝐂
𝐑𝐑𝐑𝐑

𝐂𝐂
𝐑𝐑𝐑𝐑

𝐂𝐂
𝐕𝐕𝐕𝐕

𝐂𝐂
𝐕𝐕𝐕𝐕

With Cvv further detailed as:
c𝑥̇𝑥𝑥̇𝑥 c𝑥̇𝑥𝑦̇𝑦 c𝑥̇𝑥𝑧̇𝑧
c𝑥̇𝑥𝑦̇𝑦 c𝑦̇𝑦𝑦̇𝑦 c𝑦̇𝑦𝑧̇𝑧
c𝑥̇𝑥𝑧̇𝑧 c𝑦̇𝑦𝑧̇𝑧 c𝑧̇𝑧𝑧̇𝑧
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The small object 3D Pc algorithm (continued)

Step 3:  Determine the transformation, T, necessary to 
diagonalize the velocity partition, CVV, of the matrix C.

𝐂𝐂∗ = 𝐓𝐓 𝟎𝟎
𝟎𝟎 𝐓𝐓

𝐂𝐂
𝐑𝐑𝐑𝐑

𝐂𝐂
𝐑𝐑𝑽𝑽

𝐂𝐂
𝐕𝐕𝐕𝐕

𝐂𝐂
𝐕𝐕𝐕𝐕

𝐓𝐓𝐓𝐓 𝟎𝟎
𝟎𝟎 𝐓𝐓𝐓𝐓

𝐂𝐂∗ =

𝑐𝑐𝑥𝑥𝑥𝑥 𝑐𝑐𝑥𝑥𝑥𝑥 𝑐𝑐𝑥𝑥𝑥𝑥 𝑐𝑐𝑥𝑥𝑥𝑥 𝑐𝑐𝑥𝑥𝑥𝑥 𝑐𝑐𝑥𝑥𝑥𝑥
𝑐𝑐𝑥𝑥𝑥𝑥 𝑐𝑐𝑦𝑦𝑦𝑦 𝑐𝑐𝑦𝑦𝑦𝑦 𝑐𝑐𝑦𝑦𝑦𝑦 𝑐𝑐𝑦𝑦𝑦𝑦 𝑐𝑐𝑦𝑦𝑦𝑦
𝑐𝑐𝑥𝑥𝑥𝑥 𝑐𝑐𝑦𝑦𝑦𝑦 𝑐𝑐𝑧𝑧𝑧𝑧 𝑐𝑐𝑧𝑧𝑧𝑧 𝑐𝑐𝑧𝑧𝑧𝑧 𝑐𝑐𝑧𝑧𝑧𝑧
𝑐𝑐𝑥𝑥𝑥𝑥 𝑐𝑐𝑦𝑦𝑦𝑦 𝑐𝑐𝑧𝑧𝑧𝑧 𝑐𝑐𝑢𝑢𝑢𝑢 0 0
𝑐𝑐𝑥𝑥𝑥𝑥 𝑐𝑐𝑦𝑦𝑦𝑦 𝑐𝑐𝑧𝑧𝑧𝑧 0 𝑐𝑐𝑣𝑣𝑣𝑣 0
𝑐𝑐𝑥𝑥𝑥𝑥 𝑐𝑐𝑦𝑦𝑦𝑦 𝑐𝑐𝑧𝑧𝑧𝑧 0 0 𝑐𝑐𝑤𝑤𝑤𝑤

The transformed mean state vector is noted as:

𝐒𝐒
𝛍𝛍

= 𝜇𝜇𝑥𝑥 𝜇𝜇y 𝜇𝜇z 𝜇𝜇𝑢𝑢 𝜇𝜇𝑣𝑣 𝜇𝜇𝑤𝑤 𝐓𝐓
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The small object 3D Pc algorithm (continued)

Step 4:  A reduction in dimension by 2 may be made which is 
facilitated by the diagonalization of CVV and the choice of a cube as 
the hard body figure. This reduction results in three separate problems 
to be solved, one corresponding to each of the principal axis directions 
of the diagonalized velocity error covariance matrix. (The w 
component steps are presented here.)

𝐒𝐒
𝐰𝐰

= 𝑥𝑥 𝑦𝑦 𝑧𝑧 𝑤𝑤 𝐓𝐓

𝐒𝐒
𝛍𝛍𝛍𝛍

= 𝜇𝜇𝑥𝑥 𝜇𝜇𝑦𝑦 𝜇𝜇𝑧𝑧 𝜇𝜇𝑤𝑤 𝐓𝐓

𝐂𝐂𝐂𝐂 =

𝑐𝑐𝑥𝑥𝑥𝑥 𝑐𝑐𝑥𝑥𝑥𝑥 𝑐𝑐𝑥𝑥𝑥𝑥 𝑐𝑐𝑥𝑥𝑥𝑥
𝑐𝑐𝑥𝑥𝑥𝑥 𝑐𝑐𝑦𝑦𝑦𝑦 𝑐𝑐𝑦𝑦𝑦𝑦 𝑐𝑐𝑦𝑦𝑦𝑦
𝑐𝑐𝑥𝑥𝑥𝑥 𝑐𝑐𝑦𝑦𝑦𝑦 𝑐𝑐𝑧𝑧𝑧𝑧 𝑐𝑐𝑧𝑧𝑧𝑧
𝑐𝑐𝑥𝑥𝑥𝑥 𝑐𝑐𝑦𝑦𝑦𝑦 𝑐𝑐𝑧𝑧𝑧𝑧 𝑐𝑐𝑤𝑤𝑤𝑤
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The small object 3D Pc algorithm (continued)

Step 4: (continued) additional definitions of convenient terms

DCW = 𝐂𝐂𝐂𝐂

𝐁𝐁𝐁𝐁 = 𝐂𝐂𝐂𝐂−𝟏𝟏

𝐁𝐁𝐁𝐁 =

𝑏𝑏𝑥𝑥𝑥𝑥 𝑏𝑏𝑥𝑥𝑥𝑥 𝑏𝑏𝑥𝑥𝑥𝑥 𝑏𝑏𝑥𝑥𝑥𝑥
𝑏𝑏𝑥𝑥𝑥𝑥 𝑏𝑏𝑦𝑦𝑦𝑦 𝑏𝑏𝑦𝑦𝑦𝑦 𝑏𝑏𝑦𝑦𝑦𝑦
𝑏𝑏𝑥𝑥𝑥𝑥 𝑏𝑏𝑦𝑦𝑦𝑦 𝑏𝑏𝑧𝑧𝑧𝑧 𝑏𝑏𝑧𝑧𝑧𝑧
𝑏𝑏𝑥𝑥𝑥𝑥 𝑏𝑏𝑦𝑦𝑦𝑦 𝑏𝑏𝑧𝑧𝑧𝑧 𝑏𝑏𝑤𝑤𝑤𝑤

𝐁𝐁𝐁𝐁 = 𝑏𝑏𝑥𝑥𝑥𝑥 𝑏𝑏𝑦𝑦𝑦𝑦 𝑏𝑏𝑧𝑧𝑧𝑧 𝑏𝑏𝑤𝑤𝑤𝑤 𝐓𝐓

𝐒𝐒
𝛍𝛍𝛍𝛍

= 𝜇𝜇𝑥𝑥 𝜇𝜇𝑦𝑦 𝜇𝜇𝑧𝑧 0 𝐓𝐓
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The small object 3D Pc algorithm (continued)

Intermediate forms of the probability density function that are used to 
create the axis by axis contributions to dPc/dt at any time t

𝑝𝑝𝑝𝑝𝑝𝑝𝑥𝑥 =
𝑒𝑒−0.5 𝑺𝑺𝑢𝑢−𝑺𝑺𝜇𝜇𝜇𝜇

𝑇𝑇𝑩𝑩𝑩𝑩 𝑺𝑺𝑢𝑢−𝑺𝑺𝜇𝜇𝑢𝑢

4𝜋𝜋2 𝐷𝐷𝐷𝐷𝑈𝑈

𝑝𝑝𝑝𝑝𝑝𝑝𝑦𝑦 =
𝑒𝑒−0.5 𝑺𝑺𝑣𝑣−𝑺𝑺𝜇𝜇𝑣𝑣

𝑇𝑇𝑩𝑩𝑽𝑽 𝑺𝑺𝑣𝑣−𝑺𝑺𝜇𝜇𝑣𝑣

4𝜋𝜋2 𝐷𝐷𝐷𝐷𝑉𝑉

𝑝𝑝𝑝𝑝𝑝𝑝𝑧𝑧 =
𝑒𝑒−0.5 𝑺𝑺𝑤𝑤−𝑺𝑺𝜇𝜇𝜇𝜇

𝑇𝑇𝑩𝑩𝑩𝑩 𝑺𝑺𝑤𝑤−𝑺𝑺𝜇𝜇𝜇𝜇

4𝜋𝜋2 𝐷𝐷𝐷𝐷𝐷𝐷
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3D Pc algorithm (intermediate discussion)

• So far, all is still general, no approximations
• Assume we would like a lower order approximation to the Pc
• Suppose we choose to do a small variable expansion of the 4D 

probability density function (pdf) in terms of only the position 
components

• What order do we choose?
– When we integrate the pdf with respect to the position components 

we automatically get two orders
– Do a zeroth order expansion of the pdf
– Resulting rate of Pc accumulation will be to second order in the 

characteristic length, b, of the cube

• Integrate with respect to the x, y and w components of the 
relative state (this is for the w component specifically) 
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The small object 3D Pc algorithm (continued)

Step 5:  The axis by axis parts of the time derivative of Pc at the 
current time of evaluation are given by:

ṖC 𝑢𝑢 =
2 � b2 � e−0.5�𝐒𝐒𝜇𝜇𝜇T �𝐁𝐁𝐁𝐁�𝐒𝐒𝜇𝜇𝜇

𝜋𝜋2 � DCU � b𝑢𝑢𝑢𝑢
� 1 +

𝜋𝜋 � 𝐁𝐁𝐁𝐁T � 𝐒𝐒𝜇𝜇𝜇𝜇 � e
�𝐁𝐁𝐁𝐁T�𝐒𝐒𝜇𝜇𝜇
2

2�b𝑢𝑢𝑢𝑢

2 � 𝑏𝑏𝑢𝑢𝑢𝑢
� Erf

𝐁𝐁𝐁𝐁T � 𝐒𝐒𝜇𝜇𝜇
2 � b𝑢𝑢𝑢𝑢

ṖC 𝑣𝑣 =
2 � b2 � e−0.5�𝐒𝐒𝜇𝜇𝜇T �𝐁𝐁𝐁𝐁�𝐒𝐒𝜇𝜇𝜇

𝜋𝜋2 � DCV � b𝑣𝑣𝑣𝑣
� 1 +

𝜋𝜋 � 𝐁𝐁𝐁𝐁T � 𝐒𝐒𝜇𝜇𝜇𝜇 � e
�𝐁𝐁𝐁𝐁T�𝐒𝐒𝜇𝜇𝜇
2

2�b𝑣𝑣𝑣𝑣

2 � b𝑣𝑣𝑣𝑣
� Erf

𝐁𝐁𝐁𝐁T � 𝐒𝐒𝜇𝜇𝜇
2 � b𝑣𝑣𝑣𝑣

ṖC 𝑤𝑤 =
2 � b2 � e−0.5�𝐒𝐒𝜇𝜇𝜇T �𝐁𝐁𝐁𝐁�𝐒𝐒𝜇𝜇𝜇

𝜋𝜋2 � DCW � b𝑤𝑤𝑤𝑤
� 1 +

𝜋𝜋 � 𝐁𝐁𝐁𝐁T � 𝐒𝐒𝜇𝜇𝜇𝜇 � e
�𝐁𝐁𝐁𝐁T�𝐒𝐒𝜇𝜇𝜇
2

2�b𝑤𝑤𝑤𝑤

2 � b𝑤𝑤𝑤𝑤
� Erf

𝐁𝐁𝐁𝐁T � 𝐒𝐒𝜇𝜇𝜇
2 � b𝑤𝑤𝑤𝑤

ṖC t = Ṗ𝑐𝑐 𝑢𝑢 + Ṗ𝑐𝑐 𝑣𝑣 + Ṗ𝑐𝑐 𝑤𝑤
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The small object 3D Pc algorithm (continued)

Step 6:  Integrate, by any appropriate technique, the time 
derivative of the probability over the time interval of interest

𝑃𝑃𝑐𝑐 𝑡𝑡𝑜𝑜, 𝑡𝑡𝑓𝑓 = �
𝑡𝑡𝑜𝑜

𝑡𝑡𝑓𝑓
ṖC t 𝑑𝑑𝑑𝑑
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Comments on the characteristic dimension, b

• Choosing b:
– 𝑏𝑏 = 𝐻𝐻𝐻𝐻𝐻𝐻 this is the most natural upper limit, circumscribed cube

– 𝑏𝑏 = 1
3
𝐻𝐻𝐻𝐻𝐻𝐻 this is the most natural lower limit, inscribed cube

– 𝑏𝑏 = 𝜋𝜋
6
𝐻𝐻𝐻𝐻𝐻𝐻 this may be the likely value, equivalent surface area

• Is b small enough?
– For 𝑏𝑏 ≤ 1𝑚𝑚, little doubt as to applicability
– For 1m < 𝑏𝑏 ≤ 5𝑚𝑚, probably always applicable
– For 𝑏𝑏 > 5 𝑚𝑚, will go from maybe to no (like for the ISS: HBR=70m)

• What is the smallest position sigma to compare b against?
– Preliminary interval integration over 𝑡𝑡1, 𝑡𝑡2 to find best 𝑡𝑡𝑜𝑜, 𝑡𝑡𝑓𝑓
– Save states and covariance matrices (ephemeris)
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Future work

• Publish results on a higher order solution that removes the 
small HBR requirement
– Actual higher order algorithm is complete
– Would like to provide examples of application
– Include this small HBR algorithm as a specific subcase

• Work on removing the assumption that position error sigmas 
are small compared to the orbital curvature
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The End

• Thank you for your time and attention
• Any questions?
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