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Abstract

This paper presents an autonomous path-following control architecture for a tilt-
wing, distributed electric propulsion, vertical take-off and landing unmanned aerial
system in hover mode and presents indoor flight test results. The testbed vehicle
is a subscale model with the same configuration as the NASA GL-10 aircraft. The
control architecture consists of an inner-loop attitude controller, outer-loop trajec-
tory controller, and a trajectory generation scheme. The flight test results show
that the vehicle can satisfactorily follow a path prescribed by a list of waypoints
around the indoor flight room.

1 Introduction

Rapid growth has occurred in recent years in the areas of unmanned aerial sys-
tems (UAS) [1,2], electric aircraft [3,4], and autonomy [5-10]. Furthermore, vertical
take-off and landing (VTOL), distributed electric propulsion vehicles have been pro-
posed for use as air taxi platforms to provide on-demand mobility (ODM) in urban
environments [11,12]. This paper describes an autonomous path-following archi-
tecture for a tilt-wing, distributed electric propulsion, VITOL UAS in hover flight.
The results herein serve as a baseline towards development of a testbed for future
mission-level ODM-enabling autonomous technologies. Indoor flight test results are
presented to validate the architecture.

The test vehicle for this system is a subscale version of the NASA GL-10 [13,14].
The vehicle features a tilting wing and tail, ten electric engines (eight on the wing
and two on the tail), an aileron on each wing, an elevator on the horizontal tail,
and a rudder on the vertical tail. These constitute a total of sixteen actuators. The
testbed vehicle utilizes and builds upon the avionics architecture described in [15].

The control system architecture used to achieve autonomous path-following con-
sists of an inner-loop attitude controller, the outer-loop trajectory controller, and a
trajectory generator. The attitude controller outputs vehicle torque control signals
(which are transformed to actuator commands via a control allocation matrix) to
track commanded Euler angles. The trajectory controller outputs the commanded
Euler angles as well as the total thrust of the vehicle such that commanded Carte-
sian position in a ground-fixed coordinate system is tracked. Finally, the trajectory
generator outputs the position command that drives the vehicle towards a desired
waypoint at a desired velocity. Additionally, the trajectory generator checks whether
the vehicle has been inside a tolerance region around the desired waypoint for a de-
sired time-period. If so, the current waypoint is advanced to the next item in a
pre-specified list.

This memo is organized as follows. Section 2 describes the testbed vehicle in
detail, Section 3 describes the path-following control system, Section 4 presents
indoor flight test results, and conclusions are drawn in Section 5.



2 Testbed Vehicle Description

The subscale GL-10 testbed vehicle is shown in Fig. 1. This vehicle has a tilting
wing and tail, eight motors distributed along the wing, two motors attached to the
tail, an aileron on either side of the wing, an elevator on the horizontal tail, and a
rudder on the vertical tail, for a total of sixteen actuators.

Figure 1. Subscale GL-10 testbed vehicle.

The vehicle is equipped with a VectorNav® VN-200 inertial navigation system
(INS) which uses an Extended Kalman Filter (EKF) approach to fuse data from gy-
roscopes, accelerometers, a magnetometer, and GPS to output an estimated state.
The state variables from the INS that are used in this paper are the three Euler an-
gles and the body-axis angular velocity. A LightWare® SF10/B laser range finder is
used to measure altitude. Lastly, a VICON® camera system is used to get horizon-
tal position in a ground-fixed Cartesian coordinate system. Note that the VICON®
system is used as a surrogate for GPS position data for indoor flight testing, and the
control system is designed such that the VICON® system can easily be replaced by
GPS for outdoor flights. An Intel Edison® single-board computer is used to manage
the sensors and actuators and communicate with the control system, which runs on
a desktop computer “ground station” in MATLAB/ Simulink ®

3 Control System

The path-following control architecture consists of an inner-loop attitude controller,
an outer-loop trajectory controller, and a trajectory generation scheme. The system
takes a pre-specified list of waypoints and drives the vehicle to each of them in order,
beginning with an automatic vertical takeoff, and ending with an automatic vertical
landing. The overall block diagram of this architecture is shown in Fig. 2.
Throughout this section, variables are referenced to a ground-fixed coordinate
system and a body-fixed coordinate system. The ground-fixed system is defined with
the origin at the center of the indoor flight test room, the z-axis pointing north,
the y-axis pointing east, and the z-axis pointing down. The body-fixed system is
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Figure 2. Path-following control system architecture.

defined with the origin at the vehicle center of gravity (CG), the z-axis pointing
through the vehicle nose, the y-axis pointing out of the right wing, and the z-axis
completing a triad. The individual components of the system are described in the
following.

3.1 Attitude Controller

The attitude controller consists of three de-coupled proportional-derivative (PD)
control loops. Each loop corresponds to a single Euler angle. The three controllers
are given as

Ki% (¢cmd - (Z)) + Kd¢ (C(S)d)cmd - Qb) + Taprims

7y = Kpg(Oema = 0) + Ky (C(8)bema — 0) + Typpi

Tz = pr (Yema — ) + Kd¢ (C(8)%emd = U) + Tzrpims (1)

where ¢, 6, and ¢ are the roll, pitch and yaw angles respectively, the subscript, cmd,
denotes a commanded quantity, 7., 7y, and 7, are the vehicle torque commands
about the x, y, and z body axes respectively, 7., ., . Ty, .., and 7, — are trim
torque values, K, ., Kp,, and K, are the proportional gains for roll, pitch, and
yaw respectively, Kg,, Kq,, and Ky, are the derivative gains for roll, pitch, and yaw
respectively, and C(s) = ;%% is a high-pass filter used to approximate the derivatives
of the commanded angles. The trim torque values are determined experimentally
to counteract uncertainties in the determination of the control allocation matrix.
The Euler angles, ¢, 0, and v are taken directly from the INS. Their derivatives

are calculated from the body axis angular rates according to

Tx

é 1 singtanf cos¢tand| [p

6] =10 coso —sing | |qf, (2)
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where p, ¢, and r are the body axis roll, pitch, and yaw rates respectively.
The torque commands and thrust command T generated by the trajectory con-
troller are transformed to actuator commands through a linear mapping,

u=MI[T 7, 7 TZ]T, (3)



where u € R0 is a vector of actuator commands and M € R'*4 is the control
allocation matrix. M maps torque and thrust commands to actuator commands
such that all motors are used to generate the net thrust, differential thrusts on
the right and left wing motors are used to generate roll torque, differential wing
and tail thrusts generate pitch torque, and differential ailerons generate yaw torque
by deflecting the propeller-induced airflow. The wing and tail tilt mechanisms are
controlled in an open-loop fashion to transition from the hover mode to forward
flight, however, this paper only deals with the hover flight mode. The elevator and
rudder are not used in hover mode, but it should be noted that M changes as a
function of wing/tail tilt angles. When the wing and tail are tilted fully down,
M maps the torques to the aerodynamic surfaces in the fashion of a traditional
fixed-wing aircraft. During transition the elements of M are a weighted sum of the
elements for hover and forward flight modes. After this actuator ganging scheme is
applied, the elements of M are chosen such that the torque commands are scaled by
the vehicle inertia about the hover operating point, i.e. 7, = 1 results in an angular
acceleration 0

sensor data to obtain velocity as a feedback signal. However, the high-
frequency components of these signals are naturally filtered by the vehicle dynamics,
and the low-frequency components are adequately tracked. There is a period of poor
tracking performance in pitch angle from about the 22-28 second marks. This can be
attributed to an external disturbance caused by a tug on the overhead safety tether.
In the future, the bandwidth of the filter used to generate the velocity estimate
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