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applied in their Coronal Global Evolutionary Model(CGEM) model suite ( Fisher et al.637

(2015)) which will be delivered to the CCMC shortly.638

Whatever approach is used to de�ne the surface information, it must then be in-639

corporated into the �eld model in a manner which is consistent with the algorithm's de-640

sign, its discretization approach, and its constraint equations. Obviously, codes which641

use non-spherical coordinates require additional spatial interpolation. To support this642

processing,MacNeice and Allred (2018) developed the MAGIC tools suite which is avail-643

able for user download from the CCMC website.644

It should be recognized that any observational data set inevitably includes mea-645

surement errors. Typically the error bars associated with horizontal components of the646

magnetic �eld are larger than those associated with the line of sight components. As a647

result, the observed surface �elds are inconsistent with known physical constraints such648

as the solenoidal condition. The data must be modi�ed to accommodate this before it649

can be safely applied within the models. It is not yet clear how best to achieve this. In650

addition there is a known orbital phase signature in the HMI data which has yet to be651

fully understood (Schuck et al.(2016a),Schuck et al.(2016b)). The correlation tracking652

programs require data with a cadence of 12 minutes or less for stable reconstruction, given653

the HMI pixel sizes (Leake et al. (2017)). Their results are therefore impacted by this654

problem, and until it is corrected, results of models driven directly by this data must be655

treated with caution.656

To date, some attempts have been made with MHD and magneto-frictional codes657

driven by HMI data to model the evolution of active regions (e.g. Jiang et al. (2016),658

Hayashi et al. (2018), Yardley et al. (2018)), but have not yet been applied to the global659

�eld.660

3.6 Physically Motivated Heating, Turbulence and Turbulent Energy661

During their early development, almost all multi-dimensional models of the solar662

wind relied on simple volumetric heating formulae, not connected directly to any spe-663

ci�c physical process. Typically they also ignored the energy contained in sub-grid scale664

turbulence. Over the last half decade global MHD model developers have begun to in-665

clude the in
uence of this sub-grid scale turbulence, and coronal and solar wind heat-666

ing and acceleration sources based on speci�c physical processes. One example is heat-667
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ational centers. Traditionally this meant investing in large expensive computational sys-728

tems or farming out model runs to remote supercomputers, which can lead to issues with729

accessibility, data transfer speeds, and guarantees of acceptable time to solution.730

Recently, accelerated computing using Graphics Processing Unit (GPU) technol-731

ogy has become a viable alternative to traditional multicore systems. GPUs can o�er732

economical computation that is equivalent to hundreds or thousands of cores on tradi-733

tional systems. They also allow facilities the planning 
exibility to make small incremen-734

tal increases to their computing power at low cost.735

A number of developers of space weather models have already explored the use of736

GPUs (Germaschewski and Raeder(2011)). These early adopters needed major code rewrites737

to port their codes to the GPUs. The cost of developing a GPU version of their code while738

also maintaining and developing the existing code discouraged others from following this739

lead. Recent software developments have removed this impediment.740

The OpenACC 2.0 standard (https://www.openacc.org) was established in 2013741

(the current standard is OpenACC 2.6), and has opened the door for legacy codes to take742

advantage of GPU acceleration while maintaining compatibility with standard architec-743

tures. OpenACC allows the use of compiler directives that appear as comments in FOR-744

TRAN or C/C++ code. These directives identify portions of the code for acceleration,745

similar to the OpenMP standard. It o�ers a powerful set of constructs to accelerate com-746

putations on GPUs, while maintaining compatibility with existing MPI implementations.747

The PSI group is now modifying the CORHEL suite to leverage these software de-748

velopments (Caplan et al. (2017)), and if successful, would point the way for all other749

existing models to achieve similar performance boosts.750

4 Model Inputs - Problems and Prospects751

4.1 Magnetogram Issues752

The ambient solar wind model solutions are determined, in large part, by the sur-753

face magnetic �eld information which sets the lower boundary conditions of the coro-754

nal �eld model. Almost all of the models of the ambient corona that have been used to755

drive solar wind models have used Line-Of-Sight (LOS) magnetograms. There are a num-756

ber of well documented problems with these magnetograms.757
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1. Magnetograms from di�erent observatories give �elds with di�erent amplitudes,758

amounting in some cases to factors as large as 4 (Riley et al. (1969)).759

2. Magnetograph measurements are computed assuming a spatially constant mag-760

netic �eld and uniform atmosphere over a given detector pixel. In reality this as-761

sumption is never satis�ed the data are at best averages over unknown sub-resolution762

�eld structures, with response functions that vary depending on spectral and spa-763

tial resolution and integration time. Magnetogram calibration is dependent on po-764

larimetric models to account for these spectral, spatial, and temporal resolution765

shortcomings. This can introduce signi�cant di�erences to the `observed' 
ux lev-766

els (Leka and Barnes(2012)), and ultimately impact solar wind models.767

3. Interpolation and rebinning when combining individual full disk magnetograms768

into synoptic maps can add further error, principally due to the temporal aver-769

aging of the time varying �eld. Pevtsov et al.(2015) analyzed this by developing770

variance estimates (Bertello et al. (2014)) for the NSO/SOLIS synoptic magne-771

tograms and used them in ensemble mode to study their impact on the forecasts772

of the WSA/ENLIL model for L1. They estimated that the location of the HCS773

and photospheric neutral line could vary by as much as 5o in the PFSS solution774

and that that error was propagated into the WSA/ENLIL wind solutions.775

4. Polar �elds are poorly measured. Because of the tilt of the Earth's orbit, the poles776

are alternately obscured producing data gaps. Also the polar �elds are mostly ra-777

dial leading to low signal to noise in LOS measurements. Both issues are usually778

managed using interpolation of �elds from lower latitudes. Polar �elds are crit-779

ically important for determining the large scale coronal magnetic �eld, as they af-780

fect the lower degree harmonics disproportionately.781

5. Field measurements are only trusted from near disk center.782

6. Most LOS instruments calculate radial �elds by simply dividing the full-disk LOS783

�eld data by the cosine of the angle between the LOS and the solar surface nor-784

mal. This procedure is generally accurate in weaker �eld regions where the true785

�eld is approximately radial but it breaks down in sunspot active regions (Leka786

et al. (2017)) and can cause serious errors in coronal �eld models, particularly in787

the topology of the HCS.788

7. Global models require global surface �elds provided through synoptic magnetograms.789

These synoptic magnetograms are constructed using measurements made within790
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by sub-grid scale kinetic physics. Particle codes and Hall-MHD codes are being used to852

study reconnection in these small scale regimes. Although the physical reconnection pro-853

cess occurs at the small scales, there is both observational and modeling evidence to sug-854

gest that the e�ective large scale reconnection rates are actually determined, through855

non-linear small scale evolution, by the macro-scale conditions (Cassak et al.(2017)).856

Studies are in progress to understand how to use these insights to control local resistiv-857

ity in global MHD models, but it may be at least a decade before this is propagated for-858

ward into operational forecast models. These improvements will have a signi�cant im-859

pact on MHD models of evolving coronal structure, on the nature of the HCS and the860

ability of the models to forecast Bz
1.861

5.2 Time Dependence of the Solar Wind862

The solar wind is unsteady but its temporal evolution is still not well understood.863

It is instructive to consider the wind time dependence as a function of spatial scales in864

order to appreciate which aspects of the wind's time dependence may be better addressed865

by the MHD models in the near future.866

At larger spatial scales (> 105 km) the ambient fast wind is relatively steady and867

the disturbances that do exist are small amplitude. At the �nest scales (< 102 km) alfvenic868

turbulence is observed, primarily propagating outward, and is believed to contribute to869

both heating and accelerating the wind. Between these scales, in what is known as the870

inertial range, the non-linearity of the MHD equations causes some of the energy in the871

larger scale disturbances to cascade to �ner scales as the disturbances propagate outward.872

If and when this energy reaches the ion spatial scale it can be dissipated (e.g.Kiyani et873

al. (2015)). A key question is, at a given point in the wind, how much of the local alfven874

wave 
ux is the result of injection and propagation from the sun and how much is due875

to coarser disturbances near the sun cascading to �ner scales in transit from the sun?876

Observations do not currently answer this question.877

For MHD models of the fast wind in the ambient heliosphere, given current com-878

putational limitations, only the coarsest section of the inertial range is likely to be re-879

solved in the next decade. Nevertheless, together with in situ observations from the Parker880

1 B z is essentially the same as the RTN coordinate component B N .
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Improving models of the coarse scale slow wind structure will require using time913

dependent high resolution models of the corona driven by high cadence vector magne-914

tograms (see 3.5 and 4.2). At present modeling of these slow wind source region theo-915

ries is still restricted to idealized scenarios, and techniques to drive MHD codes using916

time varying photospheric vector �elds are still in the earliest stages of their develop-917

ment. We anticipate that it will take a decade before models of the streamer related and918

S-web sources will be mature enough, and computational platforms su�ciently power-919

ful to support routine use in MHD forecasting models. The inclusion of slow wind sources920

associated with interchange reconnection between open �eld and closed magnetic car-921

pet �eldlines may require signi�cantly more resolution and would likely only be included922

in the next decade through some form of statistical parameterization.923

5.3 Tomography Data924

The physics behind the UCSD kinematic tomographic modeling becomes inade-925

quate when used near the Sun, in regions very distant from it, or when exploring shock926

processes. To eliminate this de�ciency in the kinematic tomography the UCSD group927

has produced a tomographic analysis whereby the IPS analysis can iteratively update928

3-D MHD models as a kernel in the IPS time dependent tomography. Used with both929

ENLIL and the MS-FLUKSS 3-D MHD modeling to date this process allows an itera-930

tive best �t of 3-D MHD models to IPS data rather than the provision of 3-D MHD for-931

ward modeling from a lower boundary.932

The ENLIL hybrid process UCSD has developed begins by providing the 3-D MHD933

model with a kinematic model boundary. The IPS driven ENLIL model then outputs934

a �rst iteration volumetric matrix. The 3-D velocities and densities from this matrix are935

traced back to the source surface boundary and used with repeated boundary updates936

to the ENLIL model for an iterated solution best �t of the IPS data for velocity and den-937

sity. By beginning a source surface with the kinematic modeling, inputs tests show that938

only three iterations are su�cient for a low resolution iterative ENLIL model convergence;939

this takes less than 6 hours of time on modest 8 node processors. While this technique940

provides better de�ned shock fronts, and non-radial plasma transport, this analysis has941

yet to be operated in real time (Jackson et al.(2018)).942
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Future versions of this analysis are expected to use current 3-D MHD initiation tech-943

niques, such as ENLIL with current cone model technology or even more sophisticated944

3-D MHD models that begin near the solar surface. In this way these models can be it-945

eratively corrected for values of density, velocity, and magnetic �elds as heliospheric struc-946

tures move outward from the Sun. Weighted preference can be given for those param-947

eters and timing values that are the best known and resolved both near the surface and948

remotely.949

Current IPS tomographic technology is low resolution, with possibilities of at most950

a few thousand lines-of-sight to scintillating radio sources per day, and the IPS analy-951

sis has ambiguities about the relationship between the proxy parameters for small scale952

density variations observed and bulk density. This is not the same for heliospheric im-953

agers that view Thomson scattering from heliospheric electrons (Jackson et al.(2004)),954

and since the middle of the �rst decade of this century the CCMC has also hosted the955

Solar Mass Ejection Imager (SMEI) tomographic analysis at Runs on Request. Helio-956

spheric imagers provide LOS measurements of as many as several hundreds of thousand957

per day, and tomographic resolutions in 3-D potentially commensurate with the cube root958

of these numbers. Updates of similar tomographic systems to SMEI are currently planned959

that include a NASA Small Explorer Mission scienti�c mission now in Phase A, the Po-960

larimeter to Unify the Corona and Heliosphere (PUNCH), and a recently funded NASA961

operational mission concept, the All-Sky Heliospheric Imager (ASHI). Both missions pro-962

mote the extant SMEI tomographic system and updates to this system including a 3-963

D MHD analysis kernel for use in their proposed concept studies.964

6 Conclusions965

In this review we have assessed two types of models. The �rst type aims to use an-966

alytical/empirical relations, with the help of statistics and optimization to obtain the967

best prediction for the solar wind at the L1 point. The second type, the MHD models,968

use �rst-principle, physics-based forward modeling.969

From an operational forecast perspective, for the limited set of parameters which970

they report (excepting Bz ), empirical models such as AnEn, PROJECTZED and PDF971

currently outperform semi-empirical models like WSA which in turn matches or beats972

the MHD models. The limited validation data for the IPS based tomographic model Hel-973
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Ensemble Kalman Filter (ENKF) data-assimilation method is used to adjust the ADAPT821

model as new observational data becomes available. ADAPT maps are now routinely822

posted to the web, and coronal and solar wind models are beginning to use these as in-823

puts (Merkin et al. (2016),Linker et al. (2016), Linker et al. (2017)). The SURF model824

has been delivered to the CCMC and is being tested and con�gured for operation.825

Preliminary testing of the models with ADAPT maps (Linker et al. (2016)) does826

not yet show any marked improvement over results from the old static maps, but con-827

siderable re-calibration and tuning of the WSA still needs to be done before comprehen-828

sive validation studies can be executed. When run in near real time, the leading polar-829

ity spots appear �rst in the ADAPT maps when an active region rotates around the east830

limb, and this can lead to an overall imbalance of positive and negative 
ux. Techniques831

to rebalance the 
ux are currently being investigated. In addition, these newly rotated832

east limb ARs may have appeared a few days earlier on the far side, but can only be as-833

similated into the time dependent map realizations once they are observed. This forced834

‘catch-up’ can lead to errors in the global �elds temporal evolution.835

5 Research Topics Not Yet in Ambient Wind Models836

5.1 Parameterization of Sub-Scale Processes837

Sub-scale physical processes a�ect the ambient wind solution in two ways. The �rst838

is through ubiquitous ‘volumetric’ source terms in the MHD equations which are really839

determined by kinetic processes. The obvious example would be the local heating and840

acceleration rates due to dissipation of �ne scale alfvenic turbulence which is discussed841

in 3.6 and 5.2. It would also include the rates of exchange of thermal energy and mo-842

mentum between ions and electrons which are known to have di�erent temperatures and843

di�erent degrees of thermal anisotropy, resulting perhaps in the development of insta-844

bilities such as �rehose and mirror (Kasper et al. (2006)).845

The second way is through the sensitivity of the large scale solution to sub-scale846

processes at critical locations. The obvious example of this would be the way sub-scale847

processes set the true plasma resistivity and reconnection rates in the centers of current848

sheets. Classical estimates of the plasma resistivity in the corona and heliosphere are very849

low and so in practice in MHD codes this is always overwhelmed by numerical resistiv-850

ity due to the �nite resolution of the models. The true reconnection rates are determined851
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by sub-grid scale kinetic physics. Particle codes and Hall-MHD codes are being used to852

study reconnection in these small scale regimes. Although the physical reconnection pro-853

cess occurs at the small scales, there is both observational and modeling evidence to sug-854

gest that the e�ective large scale reconnection rates are actually determined, through855

non-linear small scale evolution, by the macro-scale conditions (Cassak et al. (2017)).856

Studies are in progress to understand how to use these insights to control local resistiv-857

ity in global MHD models, but it may be at least a decade before this is propagated for-858

ward into operational forecast models. These improvements will have a signi�cant im-859

pact on MHD models of evolving coronal structure, on the nature of the HCS and the860

ability of the models to forecast Bz
1.861

5.2 Time Dependence of the Solar Wind862

The solar wind is unsteady but its temporal evolution is still not well understood.863

It is instructive to consider the wind time dependence as a function of spatial scales in864

order to appreciate which aspects of the wind’s time dependence may be better addressed865

by the MHD models in the near future.866

At larger spatial scales (> 105 km) the ambient fast wind is relatively steady and867

the disturbances that do exist are small amplitude. At the �nest scales (< 102 km) alfvenic868

turbulence is observed, primarily propagating outward, and is believed to contribute to869

both heating and accelerating the wind. Between these scales, in what is known as the870

inertial range, the non-linearity of the MHD equations causes some of the energy in the871

larger scale disturbances to cascade to �ner scales as the disturbances propagate outward.872

If and when this energy reaches the ion spatial scale it can be dissipated (e.g. Kiyani et873

al. (2015)). A key question is, at a given point in the wind, how much of the local alfven874

wave 
ux is the result of injection and propagation from the sun and how much is due875

to coarser disturbances near the sun cascading to �ner scales in transit from the sun?876

Observations do not currently answer this question.877

For MHD models of the fast wind in the ambient heliosphere, given current com-878

putational limitations, only the coarsest section of the inertial range is likely to be re-879

solved in the next decade. Nevertheless, together with in situ observations from the Parker880

1 Bz is essentially the same as the RTN coordinate component BN .
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Solar Probe, successfully reproducing this section of the inertial range spectrum would881

determine the correct statistical description of coarser disturbances a�ecting the fast wind.882

It would then enable modelers to understand the role of speci�c processes such as the883

Kelvin-Helmholtz instability in the cascade. At the �nest scales, more accurate charac-884

terization of the amplitude of �ne scale turbulence will de�ne how the boundary 
uxes885

and source terms for the alfven wave heating equations (see 3.6) should be set.886

In contrast to the fast wind, the slow wind is unsteady with large amplitude 
uc-887

tuations at all scales. The source of the slow wind is controversial. While everything we888

noted about the fast wind also applies to the slow wind, in addition the slow wind’s large889

amplitude 
uctuations at the coarsest scale require that we understand the coronal struc-890

tures that drive these. The slow solar wind is typically found surrounding the HCS and891

appears to have abundances similar to that of the closed corona. It appears to originate892

from a number of di�erent coronal features (e.g. Cranmer et al. (2017)).893

A signi�cant component of the slow wind clearly comes from larger structures formed894

by the boundaries of coronal holes and the outermost �eldlines of the streamers formed895

by the neighboring regions of closed �eld. Helmet streamers are not in equilibrium and896

their outer-most closed �eldlines undergo periods of expansion and pinch-o� through mag-897

netic reconnection, releasing ‘blobs’ of coronal plasma into the wind. These ‘blobs’ are898

released intermittently at intervals ranging from hours for smaller blobs to tens of hours899

for larger ones (e.g. Viall and Vourlidas (2015). The open �eldlines adjacent to pseudo-900

streamers have more complex topologies but are also believed to contribute to the slow901

wind.902

In the photosphere all open �eldlines are close to closed loops that comprise the903

magnetic carpet and it has been suggested that some of the slow wind is transferred from904

the closed carpet �eldlines to the open �eldlines through a constant process of local mag-905

netic reconnection (e.g. Cranmer (2018)). Finally the The S-web concept can encom-906

pass all of these ideas. It postulates that the slow wind originates from a network of nar-907

row open-�eld corridors which map to a web of separatrices and quasi-separatrix layers908

in the heliosphere (Antiochos et al. (2011)).909

SIRs represent the boundary between the fast and slow wind, and when the Sun910

is active, up to 50% of SIRs can be transient, indicating they vary much within one so-911

lar rotation (Jian et al. (2006)).912
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Improving models of the coarse scale slow wind structure will require using time913

dependent high resolution models of the corona driven by high cadence vector magne-914

tograms (see 3.5 and 4.2). At present modeling of these slow wind source region theo-915

ries is still restricted to idealized scenarios, and techniques to drive MHD codes using916

time varying photospheric vector �elds are still in the earliest stages of their develop-917

ment. We anticipate that it will take a decade before models of the streamer related and918

S-web sources will be mature enough, and computational platforms su�ciently power-919

ful to support routine use in MHD forecasting models. The inclusion of slow wind sources920

associated with interchange reconnection between open �eld and closed magnetic car-921

pet �eldlines may require signi�cantly more resolution and would likely only be included922

in the next decade through some form of statistical parameterization.923

5.3 Tomography Data924

The physics behind the UCSD kinematic tomographic modeling becomes inade-925

quate when used near the Sun, in regions very distant from it, or when exploring shock926

processes. To eliminate this de�ciency in the kinematic tomography the UCSD group927

has produced a tomographic analysis whereby the IPS analysis can iteratively update928

3-D MHD models as a kernel in the IPS time dependent tomography. Used with both929

ENLIL and the MS-FLUKSS 3-D MHD modeling to date this process allows an itera-930

tive best �t of 3-D MHD models to IPS data rather than the provision of 3-D MHD for-931

ward modeling from a lower boundary.932

The ENLIL hybrid process UCSD has developed begins by providing the 3-D MHD933

model with a kinematic model boundary. The IPS driven ENLIL model then outputs934

a �rst iteration volumetric matrix. The 3-D velocities and densities from this matrix are935

traced back to the source surface boundary and used with repeated boundary updates936

to the ENLIL model for an iterated solution best �t of the IPS data for velocity and den-937

sity. By beginning a source surface with the kinematic modeling, inputs tests show that938

only three iterations are su�cient for a low resolution iterative ENLIL model convergence;939

this takes less than 6 hours of time on modest 8 node processors. While this technique940

provides better de�ned shock fronts, and non-radial plasma transport, this analysis has941

yet to be operated in real time (Jackson et al. (2018)).942
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Future versions of this analysis are expected to use current 3-D MHD initiation tech-943

niques, such as ENLIL with current cone model technology or even more sophisticated944

3-D MHD models that begin near the solar surface. In this way these models can be it-945

eratively corrected for values of density, velocity, and magnetic �elds as heliospheric struc-946

tures move outward from the Sun. Weighted preference can be given for those param-947

eters and timing values that are the best known and resolved both near the surface and948

remotely.949

Current IPS tomographic technology is low resolution, with possibilities of at most950

a few thousand lines-of-sight to scintillating radio sources per day, and the IPS analy-951

sis has ambiguities about the relationship between the proxy parameters for small scale952

density variations observed and bulk density. This is not the same for heliospheric im-953

agers that view Thomson scattering from heliospheric electrons (Jackson et al. (2004)),954

and since the middle of the �rst decade of this century the CCMC has also hosted the955

Solar Mass Ejection Imager (SMEI) tomographic analysis at Runs on Request. Helio-956

spheric imagers provide LOS measurements of as many as several hundreds of thousand957

per day, and tomographic resolutions in 3-D potentially commensurate with the cube root958

of these numbers. Updates of similar tomographic systems to SMEI are currently planned959

that include a NASA Small Explorer Mission scienti�c mission now in Phase A, the Po-960

larimeter to Unify the Corona and Heliosphere (PUNCH), and a recently funded NASA961

operational mission concept, the All-Sky Heliospheric Imager (ASHI). Both missions pro-962

mote the extant SMEI tomographic system and updates to this system including a 3-963

D MHD analysis kernel for use in their proposed concept studies.964

6 Conclusions965

In this review we have assessed two types of models. The �rst type aims to use an-966

alytical/empirical relations, with the help of statistics and optimization to obtain the967

best prediction for the solar wind at the L1 point. The second type, the MHD models,968

use �rst-principle, physics-based forward modeling.969

From an operational forecast perspective, for the limited set of parameters which970

they report (excepting Bz), empirical models such as AnEn, PROJECTZED and PDF971

currently outperform semi-empirical models like WSA which in turn matches or beats972

the MHD models. The limited validation data for the IPS based tomographic model Hel-973
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Tomo suggest that it achieves performance between that of the empirical and WSA model.974

The MHD models reproduce the interplanetary magnetic sector structure reasonably well,975

but all MHD models underestimate the global open 
ux by about a factor of 2. For wind976

properties at L1, the wind speed is the most reliable forecast followed by that of parti-977

cle number density. Both plasma temperature and Bz are very poorly reproduced.978

One might ask, ‘why do we need the expensive MHD models at all if the cheaper979

empirical models predict the solar wind to the same level or better?’ The answer is, of980

course, that the cheaper models provide only partial information about the solar wind,981

while the MHD models o�er insight into the underlying physics which we are trying to982

understand.983

The pattern matching models beat all others in part because they use the L1 ob-984

servations directly, while both WSA and MHD models use photospheric magnetogram985

data with signi�cantly greater errors associated with both measurement and interpre-986

tation. Of course the empirical models do not support forecasting at locations other than987

L1, and o�er relatively little scienti�c insight.988

While not the focus of the present study, the pattern matching approaches also pro-989

vide little scope for forecasting transient solar wind structures prior to their arrival at990

L1. In principle, once the leading edge of a transient structure has passed L1, pattern991

matching could provide a short-lead-time (< 24 hours) forecast of remaining structure992

(e.g., Chen et al. (1997)), providing the historic solar wind record contains enough suit-993

able analogues.994

We anticipate that the near realtime forecasts for both WSA and the MHD mod-995

els will improve to match that of the empirical models, through the use of two approaches996

to intelligent pre-conditioning. With the use of ADAPT maps, an ensemble of at least997

12 WSA related models evolutions will be available. By comparing the WSA ADAPT998

forecasts to those of the empirical models, it should be possible to identify the best choice999

for the immediate forecast window, and then submit these to the more computationally1000

expensive MHD models. In addition, the pre-conditioning of the MHD solutions using1001

the IPS tomography models will force the solution toward the observed wind state. Both1002

of these pre-conditioning approaches are currently in development, and should close the1003

gap in forecast quality between the empirical and physics based models. These devel-1004
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opments will not improve the L1 forecast beyond that of the empirical models, but it should1005

improve the model solution at other points in the heliosphere.1006

The MHD models have made great advances in recent years in supporting scien-1007

ti�c research. More complete descriptions of the important physical process have been1008

added, advances have been made in understanding how to craft and process time depen-1009

dent photospheric magnetic �eld maps, and the coronal �eld models have demonstrated1010

the ability to model increasingly complex �eld topologies. The success of the July 20171011

eclipse forecast in reproducing the observed complex coronal topology illustrates this.1012

These new capabilities are still limited to scienti�c studies, but most can be expected1013

to migrate into operational codes during the next decade.1014

The ability to accommodate more complex �eld topologies in the coronal MHD mod-1015

els, together with the use of high cadence and high resolution photospheric magnetic vec-1016

tor �eld observations to drive the models, o�ers the prospect, for the �rst time, of re-1017

alistically representing the time dependence of the coarser scale features in the ambient1018

wind. An obvious example would be the larger plasma blobs released aperiodically from1019

the tips of helmet streamers. Progress in representing �ner scales will require improve-1020

ments in the resolution and cadence of the observations used to drive the models.1021

We anticipate that in-situ observations of the turbulence spectrum, including new1022

near sun data from the Parker Solar Probe, will better inform how wave dissipation and1023

other mechanisms are tuned to de�ne local heating and acceleration.1024

The ever increasing sophistication and physical realism of the models will support1025

a wealth of new scienti�c insights. However this will not necessarily translate into im-1026

proved operational forecast quality. An obvious question to pose is ‘when will the physics1027

based models outperform the empirical models?’. The case can be made that advances1028

in model design have positioned the models to achieve this over the next decade. How-1029

ever the pace of their development has outstripped the pace of improvements in the qual-1030

ity of the input data which they consume, and until this is remedied, these models will1031

not achieve their full forecasting potential.1032
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The comparison of their results illustrates the extent to which these codes have evolved585

over the last twenty years and shows the level of physical complexity which they can ac-586

commodate when pushed to their limits.587

Figure 2. Synthesized polarized brightness for the eclipses of 3 November 1994 and 21 August

2017 from the MAS model with thermodynamic energy equation and alfven wave heating.

The accuracy of the models has improved over time, as the underlying physical for-588

mulation was improved, and as computer power increased. The advent of massively par-589

allel computers signi�cantly improved the spatial resolution of the calculations. These590

improvements were driven, in large part, as a direct result of comparisons with eclipses.591

In addition to the white-light comparisons, the wealth of observations from SOHO/EIT592

and SDO/AIA in EUV wavelengths, and from Hinode/XRT in X-ray wavelengths, made593

it possible to improve the heating models, through comparisons of synthesized emission594

with observed emission.595

For the latest 21 August 2017 prediction, the magnetic �eld was energized along596

�lament channels, via emergence of transverse magnetic �eld, followed by 
ux cancel-597

lation to create 
ux ropes. This introduces magnetic shear along the polarity inversion598

lines (PILs) that are typically the locations at which �laments (prominences) form ( Yeates599

et al. (2018),Mikic et al. (2018)). It produces an `in
ated' appearance of streamers and600

pseudo-streamers in the lower corona that is typically inferred from eclipse images. The601

chirality of these 
ux ropes was determined by running a separate magneto-frictional model602

(Yeates (2014)) for the seven months preceding the eclipse, fed by a surface 
ux trans-603

port model (Upton and Hathaway (2014)) that assimilated HMI magnetic �eld data. The604

locations of the 
ux ropes were determined by identifying �lament channels in images605
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