Fast sensitivity-based optimal trajectory updates for
descent operations subject to time constraints

Ramon Dalmau and Xavier Prats Brian Baxley
Department of Physics - Aeronautics Division Crew Systems and Aviation Operations Branch
Technical University of Catalonia BarcelonaTECH NASA Langley Research Center (LaRC)
Castelldefels, Barcelona, Spain Hampton, VA, USA
AbstractThe ability to meet a controlled time of arrival dur- of the weather and aircraft performance models used by the

ing a continuous descent operation will enable environmentally FMS. Results showed that non-linear model predictive control
friendly and fuel ef cient descent operations while simultaneously (NMPC) [4], a guidance strategy based on a frequent update

maintaining airport throughput. Previous work showed that - : . . .
guidance gtratepgies based on a frequent recalculation of the of the optimal trajectory during the execution of the descent, is

optimal trajectory during the descent result in excellent envi- VEry robust in terms of correcting energy (Spe(?d and altitude)
ronmental impact mitigation gures while meeting operational and time deviations, providing at the same time acceptable
constraints in the presence of modelling errors. However, the time fye| consumption and noise nuisance gures. Furthermore,
lag of recalculating the trajectory using traditional optimisation  yinar research [5] has recently demonstrated the feasibility of

algorithms could lead to performance degradation and stability . . . . .
issues. This paper proposes an alternative strategy, which allows using NMPC to achieve precise spacing between aircraft, the

for fast updates of the optimal trajectory based on parametric ©Objective of interval management (IM) operations.
sensitivities. Promising results show that the performance of this ~ Traditional NMPC strategies update the optimal trajectory

method is comparable to that of instantaneously recalculating by solving a non-linear programming (NLP) optimisation
the optimal descent trajectory at each time sample. problem. Ideally, the trajectory is updated instantaneously right
after measuring the actual state of the aircraft at each time
sample. In practical applications, however, solving the NLP
Continuous descent operations (CDO) with controlled timgsoblem may take signi cant time, leading to potential stability
of arrival (CTA) at one or several metering xes could enabl&ssues and degrading the performance of the operation [6]. In
more environmentally friendly procedures without compraerder to reduce the execution time, educated simpli cations
mising capacity. This type of ight operation requires ightin the models can be used [7], at the expense of reducing the
management systems (FMS) not only able to compute aocuracy of the solution. Other NMPC implementations com-
optimal trajectory satisfying CTAs, but also to safely an@ensate for computational delay by starting the optimisation
ef ciently guide the aircraft during the execution of the descemh advance, setting the initial conditions of the new trajectory
such that these time constraints are successfully satis ed. to the predicted state of the aircraft at a look-ahead time equal
The computation of the optimal descent trajectory can le the estimated execution time. However, the unpredictability
formulated as an optimal control problem [1], in which a giveof the execution time still remains a critical issue [8].
cost function (e.g., fuel consumption) is to be minimised while An alternative method widely used in process industries,
satisfying a set of constraints. State-of-the-art FMS compuwach as chemical manufacturing, consists of computing fast
the optimal descent trajectory before starting the descewnpdates of the active optimal trajectory using the theory of
Then, this initial trajectory is frozen and the guidanceneighboring extremals [9]. Parametric sensitivities are obtained
system uses different strategies, which depend on the FM linearisation of the necessary conditions of optimality to
manufacturer, to execute it. However, the initial trajectorsapidly update the optimal trajectory for small perturbations
shows only what can be achieved given perfect knowledgethe model parameters. This strategy, known as sensitivity-
of the parameters associated with the aircraft performansased NMPC (SbNMPC) [10], [11], [12], reduces the exe-
and weather models. When the parameters used by the FMfion time while ensuring that operational constraints are
do not match reality, the initial trajectory is no longer thaatis ed and that the cost is minimised.
most optimal for the actual conditions, and some operationalln this paper, the SONMPC strategy is implemented to guide
constraints may be violated if errors are not actively nulli edaircraft during a CDOs subject to CTAs, and several descents
In previous work [2], the performance of various guidancare simulated with intentional errors in the parameters used by
strategies in the time and energy managed operations (TEM®3 FMS to describe the wind pro le. Then, the performance of
concept [3] were compared using a high- delity ight sim-SbNMPC in terms of fuel consumption and ability to satisfy
ulator, in particular environmental impact mitigation and theperational constraints is compared with those of the open-
ability to meet operational constraints. Several descents subjecip solution and the ideal NMPC (INMPC)[6], which ideally
to CTAs were simulated including errors in the parametetpdates the optimal descent trajectory without delay.

I. INTRODUCTION



[l. BACKGROUND . o
) . . min f' z';p;
Non-linear model predictive control (NMPC) was intro- Zi )
duced to the process industry in the 1970’s. This guidance st g'zp; O
strategy is based on the solution, at each time sample, of aH
optimal control problem over a future time horizon [4]. Thé"

resulting optimal control is applied only until the next time

ere the following de nitions have been considered:

sample, when the optimal control problem is solved again.  z':= huiT;xiT; ul,xTs Ul Xy )
Typical NMPC applications consider a xed-length time . It
. . i — T hT.- T KT ... T T . T

horizon, which advances an interval sample at each recalcu- 9' = i hi i Fiihiv i fy hy o

lation. However, when the system has to reach a certain state h T I

at a particular time, a shrinking horizon is often preferred. Pi ‘= i d

Using this strategy, the length of the horizon is not xed but i . . . . .
decreases by one interval sample at each time sample. and z' the vector of primal variables (including both discre-

. i - . .
In Section II-A the discrete-time optimal control problemtlsed states and controlg), is the vector of constraints; ang

for the shrinking horizon NMPC is formulated. Section -8° Klzr'?ep?ﬁaetdigf ta?sth (;urgran; ?jtfrl ;ectta?glflog?g il Zara:rgae;ﬁri'as
shows two alternatives to update the optimal solution when IEE, pap pp

ing the shrinking horizon NMPC strategy. Finally, Section II- een assumed to transform the_orlglnal optlma_l cont_rol prob-
) L . em into a NLP. Direct collocation methods discretise both
presents the working principle of two NMPC variants.

states and controls at a set of points. The discretised states and
controls become the primal variables of the NLP problem [13].
However, the algorithms proposed in this paper could be easily

The xed time interval [to; t¢] is discretised intoN + 1 . . .
[to: t] adapted to other methods such as direct multiple shooting.

equidistant time samplg$y; ty;:::;tn]. The optimal control : ) : o
problem starting at;; i = 0:::::N 1 and minimising a cost The Lagrangian function associated to problem (2) is:
function f' in the horizon[t;; ti+1;:::;tn] is formulated as: i i o T
(G tiva ] L' zhpy; o= 2hp + gt 2, (3)
) where ' 2 "0' is the Lagrange multipliers (or dual
Jnin fli= (xn)+ “k (Xk; Uk; d) variables) vector paired up with the constraigts beingng;
k=1 k=i the number of elements ig'. At the optimal solution, the
st Xi= ; (1) pairs of constraints and dual variables are divided into two
. ; it (i ; ;
Xear = F Ui d) s k=i N 1 compilemsntiary sets: the acpve @g;(g ; )and .theilr?ac;‘tlve
T L setGj,(g"; ") [11]. An optimal primal-dual pair z' ;
he (i uid) 00 k=1 N 1 satis es the rst-order necessary conditions of optimality (also
(Xn;d) 0 known as Karush-Kuhn-Tucker or KKT conditions) if [14]:
wherex 2 "= s the state vector, with initial conditions;;
u2 "uisthe control vector; and the vectdr2 " includes | L zi;p.. T =fL zi:p, + TTgL z':p, =0
. . s Mis y4 » Mi 4 » Mi
all the parameters of the model. In this formulation, ™ (4a)

Nu Na B s the stage cost, and: "™ ¥ s the i i

. ' ‘5. =0 >0 8(q-
terminal cost. The dynamics of the state vector are expressed g Zi Pi 0: 0:8(g; )2 G?C (4b)
by a set of non-linear equatiofs: ™ Mu  Na B N g z';p; =0, =0;8(3 )26, (4c)
h: ™ Nu Na 8 ™ gnd : ™ B " represent

o ) _ ; where()z and() denoted\)=d and optimal , respectively;
applicable path and terminal constraints, respectively.

and ()T represents the transpose 0). It can be stated
that PN i represents any NLP algorithm that provides the

: . . . ptimal primal-dual solution as a function of the parameters:
In a generic NMPC, the optimal trajectory obtained from (1?

is updated at eactj, given the measured current stateand 2 =Py ) )
the estimated parametadsThen, the resulting optimal control ' P
u; is applied and the horizon shrinks one interval sample.  Note that the parameters for which parametric sensitivities

There exist two alternatives to optimally update the trajeevill be computed in the next section include both initial state
tory at eacht;. Section II-B1 presents the full solution methodand model parameters. In addition, by de nition of (5), the
Section 11-B2 shows the sensitivity-based approach. optimal primal-dual solution is an implicit functions @f.

(%) to In this paper,Pn i is formulated in CasADi [15], a
The optimal trajectory can be updated by formulating th&ymbolic framework for automatic differentiation and numeric
discrete-time optimal control problem (1) as a parametric nonen-linear optimisation, and solved by using the sequen-
linear programming (NLP) problem, which can be solved biyal quadratic programming (SQP) algorithm implemented by
means of standard solvers. The formulation of the NLP is: SNOPT (Sparse Non-linear OPTimiser) NLP solver [16].



If the parametergp vector ) )

changes slowly from one time sample to the next, parametric _ kizka o _ kg'ka (11)
sensitivities at the active optimal solution can be used to P K T+l M T ki kp+1
rapidly update the optimal trajectory for a perturbatiop.

The parametric sensitivities of the primal and dual variablfi‘§i
of_ the NLP with respect to the parameters vectay azb and

b, respectively) can be obtained by differentiating the KK
condition (4) at the active optimal solutioz' ; '

If these metrics were higher than a pre-de ned threshold,
would be updated with the neve' ; ' solution andp;,

_ignd further iterations oQn ; would be triggered by setting
p; = 0 until satisfying feasibility and optimality criteria.

#" # ' #
Ly, ok zp _  Lip . . .
i o= i (6) Depending on which of the methods presented in Sec-
9z 0 p 9p tion II-B is adopted to update the optimal trajectory, the
Being consistent with the notatiog)i = ()(z' ; ). following two NMPC variants can_be de ned:
The linear system (6) can be solved fqg and p, allowing In an ideal case, problefy i
to update the optimal solution using a simple rst-order Tayld$ SClved at eaclti, as soon as the parameter vecfgris
approximation as follows: mea_lsured or espmated. Then, t_he resulting optimal control
u; is applied without delay untilt;+;, where the process
) ) . is repeated. However, for achieving optimal performance and
z' (pi+ pP)=2" (P) +2zp P (7a) good stability properties, proble®y ; needs to be solved
"+ p)= () + b p; (7b) instantaneously. We refer to this hypothetical case as the ideal

i o NMPC (INMPC). Algorithm (1) details its main steps.
where p; is the perturbation in the parameters vectot;at

Unfortunately, this fast and convenient parametric sensitiviigorithm 1 Ideal NMPC (INMPC)
update can only be used if the set of active constraints doels_ ,0. 0 Pr (D)
not change after the perturbation [11]. In practical NMPC2: for i,: 1o NN 1Odo
applications, however, constraints@j, may become inactive, 3: on-line a,t 't'__' '
or constraints irG},, may become active whem, is perturbed. M o d estimated

An interesting approach that accounts for active set changes$ Casyre ariT est
after a perturbation in the NLP parameters vector was sugk Pi id'
gested by [17]. This approach consists of reformulating Eq. (6} Assemblezi and ' fromz' ! and !
as a quadratic programming (QP) optimisation problem: 7 zi; ! Pnoi (Pi)

8: Implementu; until ti+g

min % 2Ly, 2'+ pilyp Z'+F, 7 2 . . o
z (8) It should be noted that in practical applicatioRg i may

st g' +gz z'+gp P O be computationally expensive to solve. This implies that the
For the sake of convenience, the following set of rsgontrol u; cannot be applied just aftqy; is measured, but
and second-order NLP functions sensitivities are de ned &§€rPn i is solved. The delay in calculating the new solution
Fi = fLiZZ;Lin;fiT;giz;gbg_ Here, Qu i represents May lead tp sub—opumum traJectorl_gg, failure to mget con-
any QP algorithm which provides optimal primal variable§traints, or in some instances instabilities of the solution [18].
perturbation z' and dual variables' as a function of p;: This motivates the introduction of sensitivity-based methods.
If p; is small,
z': ' =0Qn i( P (9) it is not necessary to solv®n ;i at each time sample.

, In the neighborhood of the preceding optimal solution (that

The dual variables of the optimal solution computed withonnyted at; 1), parametric sensitivities can be calculated
the unperturbed parameters vector (i.€.,(p;)) are updated (5 rapidly update the optimal solution gtusing a rst-order

with those obtained from solvin@n i, while the primal 5n5roximation. This fast trajectory update is performed by
variables and parameters vector are updated as follows: solving Qn i and updating the optimal solution with (10).
i — i i A virtue of this method is thaF' can be evaluated in the
zZ i+ )=z )+ 20 (P (10) background (betweety ; andt;) at the solution ofPy i 1
Pi=Pi*+ Pi assuming the estimated parametpgs[10], [19]. Then, on-
The rst-order update (10) will be accurate only for smalline (att;) the optimal solution is updated by solvirf@y i
p;. For large perturbations, the new solution must to bEmost instantaneously right after collectipgmeasurements.
analysed to verify that the KKT conditions are still satis ed. This method is commonly referred as sensitivity-based
This is accomplished by computing the error in the LagrangdéMPC (SbNMPC). Algorithm (2) shows the main steps of
sensitivity opr and the non-linear constraint infeasibilit,rs SONMPC, where opc and infs are the pre-de ned tolerances
at the updated pair of primal-dual variables ; ' andp;: for the optimality and feasibility criteria, respectively.



Algorithm 2 Sensitivity-based NMPC (SbNMPC) The dynamics ofx are expressed by the following set

129, % P n(py) of ordinary differential equations, considering a “gamma-
2:fori=1::::;N  1do command”, point-mass representation of the aircraft, i.e.,
3: In background betweent; ; andt;: vertical equilibrium is assumed (lift balances weight), and
4: AssembleF! fromF' 1 neglecting the cross and vertical wind components:
5: on-line att;: 5 3
6: Measurg andi (Tastimatej . ot 1 )
T X X .

7 pii iiT1d Pi f:E:a£:2% -gSII'] gm (12)
8: z' Q n il pi) vsin
9: zl hZi + ini . pNx N i i i

T whereD : R"x "v I R is the aerodynamic dragy is the
10: P [ :_d o gravity acceleration anth the mass, of which is assumed to
11:  EvaluateF' atthenewf'; ') andp, be constant because the fuel consumption during a descent is a
12: k 1 small fraction of the totain [20]. The longitudinal component
13 while (opt > opt]j infs > infs )& K<= kmax do  of the windw :R! R is modelled by a spline [21]:
14: 'zt Qw0 %
15: z' z' + Z ¢
16: EvaluateF' atthe newz' ; ' ) andp, w(h) = - 6Bi(h) (13)
17: k k+1 _ - _ . :
18: if k== Ko then Bi, i = 1;:::;n¢, are the _B-splme basis fu_nct|0n§ and
19: zi o P noi(py) c=[c;:::;¢n.] are control pO.II"ItS. of thg smoothing spline. It

. should be noted that the longitudinal wind has been modelled

20:  Implementu; until ti.; as a function of the altitude only, as done in similar works [22].

Since the total ight time is xed by the CTA, the goal is to
minimise a weighted sum of the fuel consumption and speed
Note that the contingency steps 18 and 19 are optional. Afakes use (which leads to airframe noise and pilot workload)
alternative is to not update the trajectory if the optimality anfdr the remaining distance to go. Therefore, the stage cost is:

feasibility criteria are not satis ed aftdt,ox QP iterations. ¢ K
i+

IIl. NMPC GUIDANCE STRATEGIES FOR A - (vcos + w)
TIME-CONSTRAINEDCDO

(14)

wheref; : R™ "u 1 R s the fuel ow andK a parameter
In this Section the generic optimal control (1) problem ighat determines how much the use of speed brakes is penalised.
particularised for an already initiated (i.e., where the top of |n the formulation considered herein, the generic path
descent, TOD, has been over own) CDO subject to a timgonstraints ensure that the aircraft airspeed remains within op-
constraint at a single metering x. Then, a method to estimaggational limits, and that the maximum and minimum descent
the parameters of the model representing the wind is proposgghdients, thrust and speed brakes are not exceeded:

A. Optimal control problem formulation 2VCAS VCAS 1 3 203
The state vectox = [t;v;h] is composed of time, true VMO  vcas 0
airspeed (TAS), and altitude; the control veatoe [ ;T; ]is MMO M 0
composed of the aerodynamic ight path angle, engine thrust, 0 0
and speed brakes de ection. The ight path angle is the control
that is used by the aircraft to modulate energy (i.e., exchange h = min 0 (15)
potential energy for kinetic energy and vice-versa), whereas T Thin 0
thrust and speed brakes are used to add and remove energy. Tomax T 0
Different from typical approaches, the independent variable 0
is the distance to gosj and not the time. This change is 1 0

motivated by the fact that during an ideal CDO, with no
intervention from the air traf ¢ controllers (ATC) except forwherevcas : R™ ! R is the calibrated airspeed (CAS)
the assignment of the CTA, the aircraft will follow a "closedandM : R™ ! R is the Mach number, both functions of
loop” route and the remaining distance to go will be knowrnhe state vectorycas,, and VMO are the minimum and
In addition, this formulation eases the de nition of constraintmiaximum operative CAS, respectively; MMO is maximum
at the different waypoints (located at givepof the route. operative Mach; min is the minimum descent gradieftyi,
For the remainder of this document, the optimal contr&"~ ! R andTmhax : R"™ ! R are the idle and maximum
problem will be formulated in the continuous domain. Howthrust, respectively; = 0 and = 1 indicate that speed
ever, it is straightforward to discretise it in the form of (1). brakes are retracted and fully extended, respectively.





















