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Abstract�The ability to meet a controlled time of arrival dur-
ing a continuous descent operation will enable environmentally
friendly and fuel ef�cient descent operations while simultaneously
maintaining airport throughput. Previous work showed that
guidance strategies based on a frequent recalculation of the
optimal trajectory during the descent result in excellent envi-
ronmental impact mitigation �gures while meeting operational
constraints in the presence of modelling errors. However, the time
lag of recalculating the trajectory using traditional optimisation
algorithms could lead to performance degradation and stability
issues. This paper proposes an alternative strategy, which allows
for fast updates of the optimal trajectory based on parametric
sensitivities. Promising results show that the performance of this
method is comparable to that of instantaneously recalculating
the optimal descent trajectory at each time sample.

I. I NTRODUCTION

Continuous descent operations (CDO) with controlled times
of arrival (CTA) at one or several metering �xes could enable
more environmentally friendly procedures without compro-
mising capacity. This type of �ight operation requires �ight
management systems (FMS) not only able to compute an
optimal trajectory satisfying CTAs, but also to safely and
ef�ciently guide the aircraft during the execution of the descent
such that these time constraints are successfully satis�ed.

The computation of the optimal descent trajectory can be
formulated as an optimal control problem [1], in which a given
cost function (e.g., fuel consumption) is to be minimised while
satisfying a set of constraints. State-of-the-art FMS compute
the optimal descent trajectory before starting the descent.
Then, this initial trajectory is �frozen� and the guidance
system uses different strategies, which depend on the FMS
manufacturer, to execute it. However, the initial trajectory
shows only what can be achieved given perfect knowledge
of the parameters associated with the aircraft performance
and weather models. When the parameters used by the FMS
do not match reality, the initial trajectory is no longer the
most optimal for the actual conditions, and some operational
constraints may be violated if errors are not actively nulli�ed.

In previous work [2], the performance of various guidance
strategies in the time and energy managed operations (TEMO)
concept [3] were compared using a high-�delity �ight sim-
ulator, in particular environmental impact mitigation and the
ability to meet operational constraints. Several descents subject
to CTAs were simulated including errors in the parameters

of the weather and aircraft performance models used by the
FMS. Results showed that non-linear model predictive control
(NMPC) [4], a guidance strategy based on a frequent update
of the optimal trajectory during the execution of the descent, is
very robust in terms of correcting energy (speed and altitude)
and time deviations, providing at the same time acceptable
fuel consumption and noise nuisance �gures. Furthermore,
other research [5] has recently demonstrated the feasibility of
using NMPC to achieve precise spacing between aircraft, the
objective of interval management (IM) operations.

Traditional NMPC strategies update the optimal trajectory
by solving a non-linear programming (NLP) optimisation
problem. Ideally, the trajectory is updated instantaneously right
after measuring the actual state of the aircraft at each time
sample. In practical applications, however, solving the NLP
problem may take signi�cant time, leading to potential stability
issues and degrading the performance of the operation [6]. In
order to reduce the execution time, educated simpli�cations
in the models can be used [7], at the expense of reducing the
accuracy of the solution. Other NMPC implementations com-
pensate for computational delay by starting the optimisation
in advance, setting the initial conditions of the new trajectory
to the predicted state of the aircraft at a look-ahead time equal
to the estimated execution time. However, the unpredictability
of the execution time still remains a critical issue [8].

An alternative method widely used in process industries,
such as chemical manufacturing, consists of computing fast
updates of the active optimal trajectory using the theory of
neighboring extremals [9]. Parametric sensitivities are obtained
by linearisation of the necessary conditions of optimality to
rapidly update the optimal trajectory for small perturbations
in the model parameters. This strategy, known as sensitivity-
based NMPC (SbNMPC) [10], [11], [12], reduces the exe-
cution time while ensuring that operational constraints are
satis�ed and that the cost is minimised.

In this paper, the SbNMPC strategy is implemented to guide
aircraft during a CDOs subject to CTAs, and several descents
are simulated with intentional errors in the parameters used by
the FMS to describe the wind pro�le. Then, the performance of
SbNMPC in terms of fuel consumption and ability to satisfy
operational constraints is compared with those of the open-
loop solution and the ideal NMPC (INMPC)[6], which ideally
updates the optimal descent trajectory without delay.



II. BACKGROUND

Non-linear model predictive control (NMPC) was intro-
duced to the process industry in the 1970’s. This guidance
strategy is based on the solution, at each time sample, of an
optimal control problem over a future time horizon [4]. The
resulting optimal control is applied only until the next time
sample, when the optimal control problem is solved again.

Typical NMPC applications consider a �xed-length time
horizon, which advances an interval sample at each recalcu-
lation. However, when the system has to reach a certain state
at a particular time, a shrinking horizon is often preferred.
Using this strategy, the length of the horizon is not �xed but
decreases by one interval sample at each time sample.

In Section II-A the discrete-time optimal control problem
for the shrinking horizon NMPC is formulated. Section II-B
shows two alternatives to update the optimal solution when us-
ing the shrinking horizon NMPC strategy. Finally, Section II-C
presents the working principle of two NMPC variants.

A. The shrinking horizon NMPC optimal control problem
The �xed time interval [t0; tf ] is discretised intoN + 1

equidistant time samples[t0; t1; : : : ; tN ]. The optimal control
problem starting atti; i = 0; : : : ; N�1 and minimising a cost
function f i in the horizon[ti; ti+1; : : : ; tN ] is formulated as:

minxk;uk
k=i;:::;N

f i := � (xN ) +
N�1X

k=i

‘k (xk;uk;d)

s.t xi = �i
xk+1 = fk (xk;uk;d) ; k = i; : : : ; N � 1
hk (xk;uk;d) � 0; k = i; : : : ; N � 1
 (xN ;d) � 0

(1)

wherex 2 Rnx is the state vector, with initial conditions�i;
u 2 Rnu is the control vector; and the vectord 2 Rnd includes
all the parameters of the model. In this formulation,‘ : Rnx�
Rnu � Rnd ! R is the stage cost, and� : Rnx ! R is the
terminal cost. The dynamics of the state vector are expressed
by a set of non-linear equationsf : Rnx�Rnu�Rnd ! Rnx ;
h : Rnx � Rnu � Rnd ! Rnh and : Rnx ! Rn represent
applicable path and terminal constraints, respectively.

B. Optimal control solution updates
In a generic NMPC, the optimal trajectory obtained from (1)

is updated at eachti, given the measured current state�i and
the estimated parametersd. Then, the resulting optimal control
ui is applied and the horizon shrinks one interval sample.

There exist two alternatives to optimally update the trajec-
tory at eachti. Section II-B1 presents the full solution method;
Section II-B2 shows the sensitivity-based approach.

∞) Full solution updates (including initial solution at t0):
The optimal trajectory can be updated by formulating the
discrete-time optimal control problem (1) as a parametric non-
linear programming (NLP) problem, which can be solved by
means of standard solvers. The formulation of the NLP is:

min
zi

f i
�
zi;pi

�

s.t gi
�
zi;pi

�
� 0

(2)

where the following de�nitions have been considered:

zi :=
�
uTi ;x

T
i ;u

T
i+1;x

T
i+1; : : : ;u

T
N ;x

T
N
�T

gi :=
h
fTi ;h

T
i ;f

T
i+1;h

T
i+1; : : : ;f

T
N�1;h

T
N�1; 

T
iT

pi :=
h
�Ti ;d

T
iT

andzi the vector of primal variables (including both discre-
tised states and controls);gi is the vector of constraints; andpi
is composed of both current state atti and model parameters.

Note that in this paper a direct collocation approach has
been assumed to transform the original optimal control prob-
lem into a NLP. Direct collocation methods discretise both
states and controls at a set of points. The discretised states and
controls become the primal variables of the NLP problem [13].
However, the algorithms proposed in this paper could be easily
adapted to other methods such as direct multiple shooting.

The Lagrangian function associated to problem (2) is:

Li
�
zi;pi;�

i� := f i
�
zi;pi

�
+ �iTgi

�
zi;pi

�
(3)

where �i 2 Rngi is the Lagrange multipliers (or dual
variables) vector paired up with the constraintsgi, beingngi
the number of elements ingi. At the optimal solution, the
pairs of constraints and dual variables are divided into two
complementary sets: the active setGiac(gi;�

i) and the inactive
set Giin(gi;�i) [11]. An optimal primal-dual pair

�
zi�;�i�

�

satis�es the �rst-order necessary conditions of optimality (also
known as Karush-Kuhn-Tucker or KKT conditions) if [14]:

Liz
�
zi�;pi;�

i�� = f iz
�
zi�;pi

�
+ �i�Tgiz

�
zi�;pi

�
= 0

(4a)
g
�
zi�;pi

�
= 0; �� > 0; 8(g; �) 2 Giac (4b)

g
�
zi�;pi

�
> 0; �� = 0; 8(g; �) 2 Giin (4c)

where(�)z and(�)� denoted(�)=dz and �optimal�, respectively;
and (�)T represents the transpose of(�). It can be stated
that PN�i represents any NLP algorithm that provides the
optimal primal-dual solution as a function of the parameters:

�
zi�;�i�

�
= PN�i (pi) (5)

Note that the parameters for which parametric sensitivities
will be computed in the next section include both initial state
and model parameters. In addition, by de�nition of (5), the
optimal primal-dual solution is an implicit functions ofpi.

In this paper,PN�i is formulated in CasADi [15], a
symbolic framework for automatic differentiation and numeric
non-linear optimisation, and solved by using the sequen-
tial quadratic programming (SQP) algorithm implemented by
SNOPT (Sparse Non-linear OPTimiser) NLP solver [16].



2) Sensitivity-based updates: If the parametersp vector
changes slowly from one time sample to the next, parametric
sensitivities at the active optimal solution can be used to
rapidly update the optimal trajectory for a perturbation�p.

The parametric sensitivities of the primal and dual variables
of the NLP with respect to the parameters vector atti (zip and
�ip, respectively) can be obtained by differentiating the KKT
condition (4) at the active optimal solution

�
zi�;�i�

�
:

"
Li�zz �gi�Tz
gi�z 0

#"
zip
�ip

#

= �

"
Li�zp
gi�p

#

(6)

Being consistent with the notation,(�)i� = (�)(zi�;�i�;pi).
The linear system (6) can be solved forzip and�ip, allowing
to update the optimal solution using a simple �rst-order Taylor
approximation as follows:

zi�(pi + �pi) = zi�(pi) + zip�pi (7a)

�i�(pi + �pi) = �i�(pi) + �ip�pi (7b)

where�pi is the perturbation in the parameters vector atti.
Unfortunately, this fast and convenient parametric sensitivity
update can only be used if the set of active constraints does
not change after the perturbation [11]. In practical NMPC
applications, however, constraints inGiac may become inactive,
or constraints inGiin may become active whenpi is perturbed.

An interesting approach that accounts for active set changes
after a perturbation in the NLP parameters vector was sug-
gested by [17]. This approach consists of reformulating Eq. (6)
as a quadratic programming (QP) optimisation problem:

min
�zi

1
2

�ziTLi�zz�zi + �pTi L
i�
zp�zi + f i�Tz �zi

s.t gi� + gi�z�zi + gi�p�pi � 0
(8)

For the sake of convenience, the following set of �rst
and second-order NLP functions sensitivities are de�ned as
F i� := fLi�zz ; Li�zp; f i�Tz ; gi�z ; gi�pg. Here,QN�i represents
any QP algorithm which provides optimal primal variables
perturbation�zi� and dual variables�i� as a function of�pi:

�
�zi�;�i�

�
= QN�i (�pi) (9)

The dual variables of the optimal solution computed with
the unperturbed parameters vector (i.e.,�i�(pi)) are updated
with those obtained from solvingQN�i, while the primal
variables and parameters vector are updated as follows:

zi�(pi + �pi) = zi�(pi) + �zi�(�pi)
pi = pi + �pi

(10)

The �rst-order update (10) will be accurate only for small
�pi. For large perturbations, the new solution must to be
analysed to verify that the KKT conditions are still satis�ed.
This is accomplished by computing the error in the Lagrange
sensitivity�opt and the non-linear constraint infeasibility�infs
at the updated pair of primal-dual variables

�
zi�;�i�

�
andpi:

�opt =
kLi�z k1
k�i�k2 + 1

; �infs =
kgi�k1
kzi�k2 + 1

(11)

If these metrics were higher than a pre-de�ned threshold,
F i� would be updated with the new

�
zi�;�i�

�
solution andpi,

and further iterations ofQN�i would be triggered by setting
�pi = 0 until satisfying feasibility and optimality criteria.

C. NMPC guidance strategies
Depending on which of the methods presented in Sec-

tion II-B is adopted to update the optimal trajectory, the
following two NMPC variants can be de�ned:

∞) Ideal NMPC (INMPC): In an ideal case, problemPN�i
is solved at eachti, as soon as the parameter vectorpi is
measured or estimated. Then, the resulting optimal control
u�i is applied without delay untilti+1, where the process
is repeated. However, for achieving optimal performance and
good stability properties, problemPN�i needs to be solved
instantaneously. We refer to this hypothetical case as the ideal
NMPC (INMPC). Algorithm (1) details its main steps.

Algorithm 1 Ideal NMPC (INMPC)
1:
�
z0�;�0�� PN (p0)

2: for i = 1; : : : ; N � 1 do
3: on-line at ti:
4: Measure�i and estimated

5: pi  
h
�Ti ;d

T
iT

6: Assemblezi� and�i� from zi�1� and�i�1�

7:
�
zi�;�i�

�
 PN�i (pi)

8: Implementu�i until ti+1

It should be noted that in practical applicationsPN�i may
be computationally expensive to solve. This implies that the
control u�i cannot be applied just afterpi is measured, but
afterPN�i is solved. The delay in calculating the new solution
may lead to sub-optimum trajectories, failure to meet con-
straints, or in some instances instabilities of the solution [18].
This motivates the introduction of sensitivity-based methods.

2) Sensitivity-based NMPC (SbNMPC): If �pi is small,
it is not necessary to solvePN�i at each time sample.
In the neighborhood of the preceding optimal solution (that
computed atti�1), parametric sensitivities can be calculated
to rapidly update the optimal solution atti using a �rst-order
approximation. This fast trajectory update is performed by
solvingQN�i and updating the optimal solution with (10).

A virtue of this method is thatF i� can be evaluated in the
background (betweenti�1 and ti) at the solution ofPN�i�1
assuming the estimated parameterspi [10], [19]. Then, on-
line (at ti) the optimal solution is updated by solvingQN�i
almost instantaneously right after collectingpi measurements.

This method is commonly referred as sensitivity-based
NMPC (SbNMPC). Algorithm (2) shows the main steps of
SbNMPC, where�opt and�infs are the pre-de�ned tolerances
for the optimality and feasibility criteria, respectively.



Algorithm 2 Sensitivity-based NMPC (SbNMPC)

1:
�
z0� ; � 0� �

 P N (p0)
2: for i = 1 ; : : : ; N � 1 do
3: In background betweent i � 1 and t i :
4: AssembleF i � from F i � 1�

5: on-line at t i :
6: Measure� i and estimated

7: � pi  
h
� T

i ; dT
i T

� pi

8:
�
� z i � ; � i � �

 Q N � i (� pi )
9: z i �  z i � + � z i �

10: pi  
h
� T

i ; dT
i T

11: EvaluateF i � at the new (z i � ; � i � ) andpi
12: k  1
13: while (� opt > � opt j � infs > � infs ) & k < = kmax do
14:

�
� z i � ; � i � �

 Q N � i (0)
15: z i �  z i � + � z i �

16: EvaluateF i � at the new (z i � ; � i � ) andpi
17: k  k + 1
18: if k == kmax then
19:

�
z i � ; � i � �

 P N � i (pi )

20: Implementu �
i until t i +1

Note that the contingency steps 18 and 19 are optional. An
alternative is to not update the trajectory if the optimality and
feasibility criteria are not satis�ed afterkmax QP iterations.

III. NMPC GUIDANCE STRATEGIES FOR A

TIME-CONSTRAINEDCDO

In this Section the generic optimal control (1) problem is
particularised for an already initiated (i.e., where the top of
descent, TOD, has been over�own) CDO subject to a time
constraint at a single metering �x. Then, a method to estimate
the parameters of the model representing the wind is proposed.

A. Optimal control problem formulation

The state vectorx = [ t; v; h] is composed of time, true
airspeed (TAS), and altitude; the control vectoru = [ 
; T; � ] is
composed of the aerodynamic �ight path angle, engine thrust,
and speed brakes de�ection. The �ight path angle is the control
that is used by the aircraft to modulate energy (i.e., exchange
potential energy for kinetic energy and vice-versa), whereas
thrust and speed brakes are used to add and remove energy.

Different from typical approaches, the independent variable
is the distance to go (s) and not the time. This change is
motivated by the fact that during an ideal CDO, with no
intervention from the air traf�c controllers (ATC) except for
the assignment of the CTA, the aircraft will follow a ”closed-
loop” route and the remaining distance to go will be known.
In addition, this formulation eases the de�nition of constraints
at the different waypoints (located at givens) of the route.

For the remainder of this document, the optimal control
problem will be formulated in the continuous domain. How-
ever, it is straightforward to discretise it in the form of (1).

The dynamics ofx are expressed by the following set
of ordinary differential equations, considering a “gamma-
command”, point-mass representation of the aircraft, i.e.,
vertical equilibrium is assumed (lift balances weight), and
neglecting the cross and vertical wind components:

f =
dx
ds

=
dx
dt

dt
ds

=

2

6
4

1
T � D

m � gsin 

v sin 


3

7
5

1
v cos
 + w

(12)

where D : Rn x � n u ! R is the aerodynamic drag;g is the
gravity acceleration andm the mass, of which is assumed to
be constant because the fuel consumption during a descent is a
small fraction of the totalm [20]. The longitudinal component
of the windw : R ! R is modelled by a spline [21]:

w(h) =
n cX

i =1

ci B i (h) (13)

B i , i = 1 ; : : : ; nc, are the B-spline basis functions and
c = [ c1; : : : ; cn c ] are control points of the smoothing spline. It
should be noted that the longitudinal wind has been modelled
as a function of the altitude only, as done in similar works [22].

Since the total �ight time is �xed by the CTA, the goal is to
minimise a weighted sum of the fuel consumption and speed
brakes use (which leads to airframe noise and pilot workload)
for the remaining distance to go. Therefore, the stage cost is:

` =
f f + K � �

(v cos
 + w)
(14)

wheref f : Rn x � n u ! R is the fuel �ow andK � a parameter
that determines how much the use of speed brakes is penalised.

In the formulation considered herein, the generic path
constraints ensure that the aircraft airspeed remains within op-
erational limits, and that the maximum and minimum descent
gradients, thrust and speed brakes are not exceeded:

h =

2

6
6
6
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6
6
6
6
6
6
6
6
6
6
4

vCAS � vCAS min

VMO � vCAS

MMO � M
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6
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7
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(15)

where vCAS : Rn x ! R is the calibrated airspeed (CAS)
and M : Rn x ! R is the Mach number, both functions of
the state vector;vCAS min and VMO are the minimum and
maximum operative CAS, respectively; MMO is maximum
operative Mach;
 min is the minimum descent gradient;Tmin :
Rn x ! R and Tmax : Rn x ! R are the idle and maximum
thrust, respectively;� = 0 and � = 1 indicate that speed
brakes are retracted and fully extended, respectively.














