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Background:  NTP Benefits

• For human Mars missions, NTP can reduce crew time away from earth from >900 days to 
<500 days while still allowing ample time for surface exploration

Reduce crew exposure to space radiation, microgravity, other hazards

• NTP can enable abort modes not available with other architectures
Potential to return to earth anytime within 3 months of earth departure burn, also to return immediately upon arrival 

at Mars

• Stage/habitat optimized for use with NTP could further reduce crew exposure to cosmic 
rays and provide shielding against any conceivable solar flare

• NTP can reduce cadence and total number of SLS launches

• NTP has potential for reducing cost, increasing flexibility, and enabling faster response 
times in cis-lunar space

• First generation NTP is a stepping stone to fission power systems and highly advanced 
nuclear propulsion systems that could further improve crew safety and architectural 
robustness
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Optimize Shielding Approach for Multiple Purposes

• Baseline approach: External shield for 
neutron and gamma shielding

Potentially ~1 mT / engine
Mitigates potential of nucleate boiling 

within propellant tank
• Consider: No external shield

Energy absorbed by propellant is used 
to help autogenously pressurize tank

» Constant pressure requires 
290 W of latent heat of 
vaporization / 1 MW reactor 
power

Challenge is to effectively harness 
energy so that it goes directly into 
heat of vaporization of propellant

» May not require any 
modifications to standard tank 
design

• Use boost pump to maintain desired 
turbopump inlet conditions
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Example of Radiation Flux 
without External Shield

Example of Radiation Flux with 
External Shield

Engine Configurations with 
External Shields

Engine Configuration with 
Secondary Pressurization Tank
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Transitioning Shielding Mass from Inert Weight 
to ECLSS Water

• Mass reduction in the habitat 
strains water reclamation 
requirements

Pushes technology 
requirements of ECLSS 
system

• External shield mass 
allocation may be 
transitioned to useable water 
for the ECLSS system

Serves as a radiation 
“storm” shelter

Reduces water 
reclamation requirement

• Water reclamation 
requirement may be reduced 
from >0.95 to <0.65
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Baseline Hab. Water

Mass of Rad. Shield to be removed

Baseline Water for Storm 
Shelter

Current ISS Reclamation Rate

Predicted Recl. Rate for 
Optimized ISS Tech
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Changing the neutron and gamma shielding approach to a “storm” shelter has the added 
benefit of reducing water reclamation requirements in the crew habitat.
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Boost Pumps Condition the Propellant
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Introduction of a boost pump prior to main turbo pump allows for a wider range of propellant 
outlet conditions from the propellant tank.

Typical Main Pump

Typical Boost Pump
• Autogenous pressurization may not be able 

to maintain steady state pressure of the 
tank

Analysis indicates a drop of ~12 psia 
during longest burn

Boost pump brings propellant back up to 
turbopump inlet conditions

Allows some saturated vapor to exit from 
the main propellant tank (risk mitigation 
to nucleate boiling)

• Investigating electric or hydraulic options
May have relatively small impact to 

system mass
May add additional approach to engine 

control
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Reactor Energy for Hot H2 Orbital Maneuvering

• Leveraged for Mars and Earth Sphere 
of Influence

E.g. NRHO to LDRO, Mars plane 
changes

• Hydrogen flow path through existing tie 
tubes

Integrates with core without changing 
fuel element or tie tubes

Additional valves on tie tube circuit
• Performance exceeds storable bi-

propellant
Isp = ~500s
Benefit of removing mass and 

overhead of bi-propellant systems
• Investigating approaches to leverage 

hot H2 for RCS, e.g. attitude control
• Including heat exchanger provides 

potential for power generation.
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The low molecular weight of hydrogen combined with the superfluous power of NTP creates 
an opportunity for low-impulse orbital maneuvering. 

Hot Hydrogen OMS 
Thruster (x2)
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Evaluating New Mission Architectures

• Reduce staging orbit from LDHEO / 
LDRO to 407x13,400 km provides 68.5 
mT vehicles with 8.4m SLS fairing

• Consider staging of in-line tanks at Mars
• Reduction in trip time reduces radiation 

exposure
• Evaluation of orbital debris and thermal 

environmental impacts pending
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Baseline PoD 45 mT Stage Vehicle Versatile 68.5 mT Stage Vehicle

Basic Reduction -3.6%
Basic Reduction -2.4%

Staging orbit for versatility 
study (407x13,400)
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