
using a combination of high-density (closely spaced) 
expendable bathythermograph (XBT) and broader-
scale Argo profiling float data (Dong et al. 2014, not 
shown; www.aoml.noaa.gov/phod/soto/mht/ax18/
report.php). These data are collected and analyzed 
in near-real time, with values spanning July 2002 to 
September 2017.

Similar to 26°N, at 41°N the AMOC and AMHT 
are decreasing less rapidly (Fig. 3.23), changing 
to −0.08 (±2.7) Sv decade−1 and −0.03 (±0.04) PW 
decade–1 as compared with −1.2 (±3.0) Sv decade−1 
and −0.09 (±0.21) PW decade−1 reported last year. 
Farther south, the MOC/MHT trends are positive, 
but decreasing in the past three years as the annual 
means at 16°N increased from −29.2 Sv in 2014 to 
−27.8 Sv in 2015 to −23.8 in 2016. This recent reduc-
tion in southward flow has led to a reduced estimate 
of the long-term trend of the AMOC from February 
2000 to September 2016 at 16°N to be +3.4 (±2.4) Sv 
decade−1. While the 35°S AMOC transport estimate 
has remained fairly constant for the last three years 
(median AMOC of about 20 Sv), during 2017 it was 
dominated by the Ekman component whereas in pre-
vious years it had been dominated by the geostrophic 
component. The variability at all latitudes in the 
Atlantic is not well correlated and, therefore, data 
from more than one latitude are needed to describe 
the state of the ocean.

i. Global ocean phytoplankton—B. A. Franz, E. M. Karaköylü1, 
D. A. Siegel, and T. K. Westberry
Marine phytoplankton contribute roughly half 

the net primary production (NPP) on Earth, fixing 
atmospheric CO2 into food that fuels global ocean 
ecosystems and drives biogeochemical cycles (e.g., 
Field et al. 1998; Falkowski et al. 1998). Phytoplank-
ton growth is dependent on availability of light and 
nutrients (e.g., iron, nitrogen, phosphorous) in the 
upper ocean euphotic zone, which in turn is influ-
enced by physical factors such as ocean temperature 
(e.g., Behrenfeld et al. 2006). SeaWiFS (McClain 
2009) and MODIS (Esaias et al. 1998) are satellite 
ocean color sensors that provide observations of suf-
ficient frequency and geographic coverage to globally 
monitor changes in the near-surface concentration 
of the phytoplankton pigment chlorophyll-a (Chla; 
mg m−3), which serves as a proxy for phytoplank-
ton abundance. Here, global Chla distributions for 
2017 are evaluated within the context of the 20-year 
continuous record provided through the combined 
observations of SeaWiFS (1997–2010) and MODIS 
on Aqua (MODISA, 2002–present). All Chla data 
used in this analysis correspond to NASA process-

Fig. 3.25. Spatial distribution of average monthly 
(a) MODISA Chla anomalies and (b) SST anomalies 
where monthly differences were derived relative to 
the MODISA 9-year climatological record (2003–11). 
Chla is expressed as % difference from climatology, 
while SST is shown as an absolute difference (°C).  
(c) identifies relationships between the sign of SST and 
Chla anomalies from panels (a) and (b), with colors 
differentiating sign pairs and missing data masked 
in black. Also shown in each panel is the location of  
the mean 15°C SST isotherm (black lines) delineating 
the PSO.

Fig. 3.24. Annual mean Chla distribution mg m−3 de-
rived from MODIS on Aqua for 2017. Also shown is 
the location of the mean 15°C SST isotherm (black 
lines) delineating the boundary of the PSO. Chla data 
are from NASA Reprocessing version 2018.0. Data 
are averaged into geo-referenced equal area bins of 
approximately 4.6 × 4.6 km2 and mapped to an equi-
rectangular projection centered at 150°W.
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ing version R2018.0 (https://oceancolor.gsfc.nasa.gov 
/reprocessing/), which utilizes common algorithms 
and calibration methods to maximize consistency in 
the multi-mission satellite record.

The spatial distribution of MODISA annual 
mean Chla for 2017 (Fig. 3.24) is consistent with the 
well-established, physically driven distribution of 
nutrients (Siegel et al. 2013) and surface mixed-layer 
light conditions (Behrenfeld et al. 2016). Chla values 
during 2017 ranged over three orders of magnitude, 
from < 0.02 mg m−3 in the central ocean gyres to > 20 
mg m−3 in nutrient-rich coastal and subpolar waters. 
To assess changes in this distribution during 2017, 
mean values for MODISA Chla in each month of the 
year were subtracted from monthly climatological 
means for MODISA (2003–11). These monthly fields 
were then averaged to produce the global chloro-
phyll anomaly map for 2017 (Fig. 3.25a). Identical 
calculations were performed on MODISA sea surface 
temperature (°C) data to produce an equivalent SST 
annual mean anomaly (Fig. 3.25b), used to illustrate 
the relationships between Chla and SST anomalies 
(Fig. 3.25c). Here the permanently stratified ocean 
(PSO) is defined as the region where annual average 
surface temperatures are > 15°C (black lines in Figs. 
3.24 and 3.25) and is characterized by surface mixed 
layers that are typically low in nutrients and shallower 
than the nutricline (Behrenfeld et al. 2006).

Consistent with the establishment 
of weak La Niña conditions through 
much of 2017, Chla concentrations 
along the equatorial Pacific were neu-
tral to slightly elevated (<10%) above 
the climatological mean (Fig. 3.25a), 
ref lecting the return of cooler, more 
nutrient-rich waters conducive to 
phytoplankton growth. Chla concen-
trations throughout much of the tropi-
cal Pacific, however, were generally 
diminished relative to climatological 
values (10%–30%) and inversely related 
to SST anomalies (gray areas above and 
below the equator in Fig. 3.25c). An-
nual mean SST anomalies (Fig. 3.25b) 
generally coincide with surface mixed 
layer depth (MLD) anomalies in the 
PSO, with warmer temperatures as-
sociated with shallower mixing, such 
that phytoplankton spend more time 
near the ocean’s surface and thus have 
higher daily sunlight exposures than 
deeper mixing populations. Phyto-
plankton respond to this increased 

light by decreasing their cellular chlorophyll levels 
(Behrenfeld et al. 2016). A secondary consequence of 
decreased MLD is a decrease in the vertical transport 
of nutrients to the surface layer, but coupling between 
the MLD and nutricline depths throughout much 
of the PSO is known to be weak (Lozier et al. 2011). 
Modestly depressed Chla concentrations (< 10%) 
were also observed throughout the Sargasso Sea and 
in the Mediterranean in 2017. Strongly elevated Chla 
concentrations were observed in the northern reaches 
of the North Atlantic (>30%), with weaker increases 
observed throughout much of the South Atlantic and 
Indian Ocean regions. Within the boundaries of the 
PSO, an inverse relationship was generally observed 
between Chla and SST anomalies (light blue and gray 
colors in Fig. 3.25c), with some notable exceptions of 
positive correlations between Chla and SST anoma-
lies in the South Atlantic and southwestern Pacific 
(dark blue colors in Fig. 3.25c). In regions outside 
the PSO, no clear relationship was observed between 
Chla and SST anomalies (Fig. 3.25c), consistent with 
previous studies (e.g., Behrenfeld et al. 2006; Franz 
et al. 2017).

Over the 20-year time series of spatially integrated 
monthly mean Chla values for the PSO (Fig. 3.26a) 
mean concentrations varied by ~20% (±0.03 mg m−3) 
around a long-term average of ~0.14 mg m−3. This 
variability includes significant seasonal cycles in 

Fig. 3.26. 1998–2017, multimission record of Chla averaged over 
the PSO for SeaWiFS (black) and MODISA (blue). (a) Independent 
record from each mission, with horizontal black line indicating the 
multimission mean Chla concentration for the region (mg m−3). (b) 
Monthly anomaly (%) for SeaWiFS and MODISA after subtraction 
of the 9-year MODISA monthly climatological mean (2003–11) from 
each mission record. The gray region in (b) shows the averaged dif-
ference between SeaWiFS and MODISA over the common mission 
lifetime. Green diamonds show the MEI, inverted and scaled to match 
the range of the Chla anomalies.
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Chla distributions and responses to climatic events. 
The time series also demonstrates the high level of 
consistency between the overlapping periods of the 
SeaWiFS and MODISA missions, lending confidence 
to interpretation of the multimission record.

Chla monthly anomalies within the PSO (Fig. 
3.26b) show variations of ±15% (±0.02 mg m−3) over 
the multimission time series. For 2017, these anoma-
lies were relatively constant and slightly elevated 
(+0.005 mg m−3, on average) relative to the long-term 
mean, consistent with the weak La Niña conditions 
as discussed previously. The link between ENSO vari-
ability and mean Chla response in the PSO is dem-
onstrated by the correspondence of anomaly trends 
with the multivariate ENSO index (MEI; Wolter and 
Timlin 1998; Fig. 3.26b, green diamonds, presented 
in the inverse to illustrate the covariation). From 1997 
through 2017, monthly anomalies in Chla concentra-
tion within the PSO continue to track large-scale cli-
mate oscillations as captured by the MEI (Fig. 3.26b), 
with some notable deviations in the 2002–06 period. 

Variability and trends in Chla reflect both adjust-
ments in phytoplankton biomass and physiology (or 
health). Both of these properties are mechanistically 
linked to physical properties of the upper ocean, as 
well as ecological relationships between phytoplank-
ton and their zooplankton predators. Unraveling 
the diversity and covariation of factors that influ-
ence Chla concentrations is essential for correctly 
interpreting the implications of Chla anomalies on 
ocean biogeochemistry and food webs. For example, 
inverse relationships between Chla and SST can 
emerge from changes in either mixed-layer light levels 
or vertical nutrient flux, but these two mechanisms 
have opposite implications on phytoplankton NPP 
(Behrenfeld et al. 2016). An additional complication 
is that measured changes in ocean color often contain 
a contribution from colored dissolved organic matter 
(Siegel et al. 2005) that can be mistakenly attributed 
to changes in Chla (Siegel et al. 2013). Thus, while the 
satellite record of ocean color continues to provide 
critical insights on global processes, ongoing effort 
and new approaches are needed to fully understand 
the story these data are telling regarding relationships 
between climate and marine ecosystems.

j. Global ocean carbon cycle—R. A. Feely, R. Wanninkhof,  
B. R. Carter, P. Landschützer, A. Sutton, and J. A. Triñanes
As a consequence of humankind’s collective 

release of CO2 emissions into the atmosphere from 
fossil fuel burning, cement production, and land 
use changes over the last 250 years, referred to as 
Anthropogenic CO2 (Canth), the atmospheric CO2 

has risen from pre-industrial levels of about 278 ppm 
(parts per million) to about 405 ppm (see Section 
2g1). The atmospheric concentration of CO2 is now 
higher than has been observed on Earth for at least 
the last 800 000 years (Lüthi et al. 2008). As discussed 
in previous State of the Climate reports, the global 
ocean is a major sink for Canth. Here the discussion is 
updated to include recent estimates of that sink. Over 
the last decade the global ocean has continued to take 
up a substantial fraction of the anthropogenic carbon 
(Canth) emissions and therefore is a major mediator 
of global climate change. Of the 10.7 (±0.9) Pg C yr−1 
Canth released during the period 2007−16, about 2.4 
(±0.5) Pg C yr−1 (26%) accumulated in the ocean, 3.0 
(±0.8) Pg C yr−1 (30%) accumulated on land, and 4.7 
(±0.1) Pg C yr−1 (43%) remained in the atmosphere 
with an imbalance of 0.6 Pg C yr−1 (Le Quéré et al. 
2018). This decadal ocean carbon uptake estimate is a 
consensus view based on a combination of measured 
decadal inventory changes, models, and global air–
sea CO2 flux estimates based on surface ocean partial 
pressure of CO2 (pCO2) measurements. Using ocean 
general circulation models that include biogeochemi-
cal parameterizations (OBGCMs) and inverse models 
that are validated with observations-based air–sea 
exchange fluxes and basin-scale ocean inventories, 
Le Quéré et al. (2018) have demonstrated that the 
oceanic anthropogenic carbon sink has grown from 
1.0 (±0.5) Pg C yr−1 in the decade of the 1960s to 2.6 
(±0.5) Pg C yr−1 in 2016. Air–sea CO2 f lux studies 
reported here indicate an ocean uptake of Canth of 2.6 
Pg C yr−1 for 2017.

1) AIR–SEA CARBON DIOXIDE FLUXES

Ocean uptake of Canth can be estimated from the 
net air–sea CO2 flux derived from the bulk flux for-
mula with air–sea differences in CO2 partial pressure 
(∆pCO2) and gas transfer coefficients as input. A 
steady contribution of carbon from riverine runoff, 
originating from organic and inorganic detritus from 
land, estimated at 0.45 Pg C yr−1 (Jacobson et al. 2007) 
is included to obtain the Canth uptake by the ocean. 
The data sources for pCO2 are annual updates of sur-
face water pCO2 observations from the Surface Ocean 
CO2 Atlas (SOCAT) composed of mooring and ship-
based observations (Bakker et al. 2016) and the LDEO 
database with ship-based observations (Takahashi et 
al. 2018). The increased observations and improved 
mapping techniques such as neural network methods 
and self-organizing maps (Landschützer et al. 2013, 
2014; Rödenbeck et al. 2015) provide global pCO2 

fields on a 1° latitude × 1° longitude grid at monthly 
time scales annually. This allows investigation of 
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