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(57) ABSTRACT

A nanostructure device is provided and performs dual func-
tions as a nano-switching/sensing device. The nanostructure
device includes a doped semiconducting substrate, an insu-
lating layer disposed on the doped semiconducting substrate,
an electrode formed on the insulating layer, and at least one
polymer nanofiber deposited on the electrode. The at least
one polymer nanofiber provides an electrical connection
between the electrode and the substrate and is the electro-
active element in the device.
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POLYMER NANOFIBER BASED
REVERSIBLE NANO-SWITCH/SENSOR
SCHOTTKY DIODE (NANOSSSD) DEVICE

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a Continuation Application claiming
the benefit of priority from U.S. patent application Ser. No.
14/672,673, filed on Mar. 30, 2015, pending, which claims
priority to U.S. patent application Ser. No. 13/242,300,
entitled "Graphene Based Reversible Nano-Switch/Sensor
Schottky Diode (nanoSSSD) Device", filed on Sep. 23,
2011, which Issued on Apr. 28, 2015 as U.S. Pat. No.
9,016,108 BI, each of which is hereby incorporated by
reference in its entirety.

ORIGIN OF THE INVENTION

The invention described herein was made by an employee
of the United States Government and may be manufactured
and used only by or for the Government for Government
purposes without the payment of any royalties thereon or
therefore.

BACKGROUND

Developing technologies in support of monitoring the
health of astronauts and the operation of critical instrumen-
tation are ongoing in order to develop a better understanding
of the changes in the human body and equipment anticipated
in future space exploration. Accordingly, the emergence of
promising technologies such as nanotechnology has sparked
efforts to develop operational electronic and sensing devices
at the nanoscale level with performance and sensing reso-
lutions not yet achieved. These efforts have resulted in great
specificity attained by tailoring the surface of sensors (i.e.,
surface modification) by optical, chemical and physical
means (i.e., via the creation of preferred end-groups using
approaches such as self-assembled monolayers).
One key or unique issue with these approaches is that

sensing takes place via the attachment of molecules of the
desired species to the sensor end groups bringing it into an
irreversible saturated state via physical adsorption or chemi-
cal adsorption. More importantly, in most instances, the
nature of the sensor is such that its mean-time-before-failure
(MTBF) is limited (e.g., sensors that are cantilever-based or
any other rendition that contains moving parts). This poses
a reliability concern especially when working with embed-
ded sensors such as BioMEMS sensors, or sensors intended
for remote, difficult to access locations such as spacecraft or
robotic probes for planetary exploration.

Traditional approaches for developing state-of-the-art
sensing technologies targeted for specific applications are
costly, mostly due to the expensive laboratory and facilities
infrastructure required for their fabrication and high-volume
production. In addition, the hybrid integrated approach of
the different circuit components makes size reduction difli-
cult. Reduced size is a relevant requirement in applications
such as Bio-embedded devices. Traditionally, even those
sensing devices developed at the nanostructure level per-
form only a unifunctional, specific sensing task and not a
dual switching/sensing function. Switching enables the
device to autonomously respond to changes in normal
conditions and trigger appropriate responses, and then revert
to baseline operation once the environment being sensed has
returned to normal.

2
For this dual functionality, the current state of the art on

nano-switch/sensors are based on metal oxide components
(e.g., ZnO) with circuits consisting of mechanical actuators
such as cantilevers, which include many non-trivial fabri-

5 cation steps. Furthermore, the mechanical nature of these
conventional sensors limits reliability due to a reduction on
the MTBF. This level of complexity may be a critical
disadvantage that can hinder the transition of the device
from laboratory demonstration to practical working appli-
cations.

10

SUMMARY

The following presents a simplified summary in order to
provide a basic understanding of some aspects of the inno-

15 vation. This summary is not an extensive overview of the
innovation. It is not intended to identify key/critical ele-
ments or to delineate the scope of the innovation. Its sole
purpose is to present some concepts of the innovation in a
simplified form as a prelude to the more detailed description

20 that is presented later.
The innovation disclosed and claimed herein, in one

aspect thereof, comprises a nanostructure device adapted to
perform dual functions as a nano-switching/sensing device.
The device includes a doped substrate, an insulating layer

25 disposed on the substrate (e.g. silicon substrate), an elec-
trode formed on the insulating layer, and at least one layer
of graphene formed on the electrode. At least one layer of
graphene provides an electrical connection between the
electrode and the substrate and is the electroactive element
in the device.

30 In another aspect of the innovation, the nanostructure
device is based on a use of graphene to develop a diode at
the nanoscale level.
In yet another aspect of the innovation, based on experi-

mental performance of the nanostructure device, the inno-
35 vation exhibits dual use functionality (e.g., switching and

sensing) and reversibility characteristics.
In still another aspect of the innovation, the nanostructure

device can be fabricated using either n-doped or p-doped
silicon substrate, which adds another dimension for appli-

40 cations of the device by enhancing its compatibility with
other silicon-based nanoelectronic circuits.
In yet another aspect, the innovation has no moving parts,

which is contrary to conventional nanosensors that rely on
cantilevers and other mechanical/moving parts. As a result,

45 the innovation offers reliable performance with a long
mean-time-before-failure (MTBF).
To accomplish the foregoing and related ends, certain

illustrative aspects of the innovation are described herein in
connection with the following description and the annexed

50 drawings. These aspects are indicative, however, of but a
few of the various ways in which the principles of the
innovation can be employed and the subject innovation is
intended to include all such aspects and their equivalents.
Other advantages and novel features of the innovation will

55 become apparent from the following detailed description of
the innovation when considered in conjunction with the
drawings.
In addition, there is no reported work on a graphene-based

dual use nano-switch/sensor device for toxic gases. Conse-
60 quently, the innovation reported in this disclosure represents

the first proof of concept of that possibility.

BRIEF DESCRIPTION OF THE DRAWINGS

65 FIG. 1 illustrates an example system incorporating a dual
function nanostructure device in accordance with the inno-
vation.
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the circuit are critical for reliable operation. Furthermore,
graphene's excellent electrical and physical properties such
as the ability to maintain current densities approximately a
million times higher than that of copper, record strength of
200 times greater than steel, and elastic stretching capabili-
ties of up to 20%, will make this device more robust than
those made from nano -cantilevers comprised of more fragile
metal oxides.

With reference now to the figures, FIG. 1 illustrates an
example system 100 implementing the innovation. The
system 100 may be a system where the exposure of a volatile
or toxic gas may be harmful to humans and/or critical
equipment. Some example systems may include airports and
mass transportation systems, airplanes, and space platforms
that require emissions monitoring, leak detection, engine
monitoring, security, fire detection, personal health moni-
toring, environmental monitoring, etc. The system 100
includes a dual function nano-switching/sensing device 102,
a gaseous species 104 introduced to the nano -switching/
sensing device 102, a control component 106, and an output
device 108.

The nano-switching/sensing device 102 is a graphene-
based nano-Switch/Sensor Schottky Diode (nanoSSSD) and
will be described in more detail further below in reference
to FIGS. 2, 3(A), and 3(B). The control component 106
receives information from the nano-switching/sensing
device 102 and outputs a signal to the output device 108. For
example, if the nano-switching/sensing device 102 senses a
gaseous species 104, the switching portion of the nano-
switching/sensing device 102 can automatically actuate
thereby sending a signal to the control component 106. The
control component 106 in turn can activate the output device
108, which may be in the form of a warning device.

With reference to FIGS. 2, 3A, and 3B simultaneously,
FIG. 2 illustrates a process 200 to fabricate a nanostructure
device 300, shown schematically in FIG. 3A, incorporating
the nano-switching/sensing device 102. At step 202, a wafer
is provided in the form of a single crystal, such as silicon
(Si), to form a substrate 302. At step 204, a doping agent or
dopant is added to the substrate 302. The doping agent may
be either an n-type (donor) or a p-type (acceptor) dopant. It
should be noted that the responsiveness of the nanostructure
device 300 differs depending on the substrate doping type.
At step 206, an insulator 304 is formed on the substrate 302.
In an example embodiment, the substrate is an n-type or a
p-type doped silicon (Si) substrate and the insulator 304 is
a thermally grown layer of silicon dioxide (S'0 2). In the
example embodiment, the silicon resistivity of the doped
silicon substrate 302 is on the order of 1-10 ohms per
centimeter. Further, the thickness of the S'0 2 insulating
layer 304 has a thickness of approximately 100-300 mu.
However, the nanoSSSD is only modestly impacted by
oxide thickness and can operate over a wider range of oxide
thickness than listed above. Fabrication of the nanostructure
device 300 utilizing a silicon -based substrate enhances its
compatibility with other silicon -based nanostructures.

At step 208, a pattern of electrodes 306 are formed on the
substrate 302 using microfabrication techniques (e.g., sput-
ter deposition, etc.). In an example embodiment shown in
FIGS. 4-5, the electrodes 306 are gold (Au) electrodes and
are disposed on the substrate 302 in a square checker -board
type pattern. In other example embodiments, however, the
electrodes 306 may be formed on the substrate 302 in any
type of pattern (e.g., circular, rectangular, etc.).

Graphene 308 is deposited on a top surface 310 of each
electrode 306 and extends over an edge 312 of the electrode
306 so as to contact the substrate 302, illustrated in FIGS.

6
3A and 3B. The graphene 308 provides a conductive path
between the electrode 306 and the substrate 302, thus
forming the nanostructure device 300 and more specifically,
a Schottky diode. The graphene 308 may include a single

5 layer of graphene or multiple layers of graphene. Further, the
graphene 308 may be produced by microfabrication tech-
niques (e.g., exfoliation methods, chemical vapor deposi-
tion, etc.).

In another example embodiment, the graphene 308 is
l0 formed on the top surface 310 of at least two electrodes 306

and a semiconducting region, which includes a portion of the
substrate 302 and the insulator 304, between the at least two
electrodes 306. As mentioned above, graphene 308 is sen-

15 sitive to the adsorption and desorption of a single gas
molecule. In an example embodiment, the semiconducting
region, which includes the substrate 302 and/or the insulator
304, may be etched such that the gaseous species to be
sensed has direct physical access to both a top and bottom

20 surface of the graphene 308.
FIGS. 4 and 5 represent micro -images of the nanostruc-

ture 300. Specifically, FIG. 4 is a top optical view micro-
scopic image magnified 200 times of an actual graphene
layer crossing the edge of the substrate 302. FIG. 5 is a

25 micrograph that illustrates the contact of the graphene layer
308 with the electrode 306, which is disposed on the S'0 2
insulating layer 304.

Referring again to FIG. 3A, a do voltage may be applied
between the electrode 306 and the substrate 302 to thereby

3o activate of the nanostructure device 300. The resulting I -V
(Current -Voltage) characteristics of the nanostructure device
300 are illustrated in FIGS. 7-10. As illustrated, when the
nanostructure device 300 is exposed to a volatile species
(e.g., ammonia (NH3)), the response (diode response) is

35 unambiguously different to that manifested under normal
ambient conditions.

Specifically, FIG. 6 shows the experimental I -V charac-
teristic response of the nanostructrure device 300 for the
n-type doped silicon substrate 302 when the atmosphere is

40 changed from a non-volatile species (e.g., nitrogen (NA to
a volatile species (NH3). Similarly, FIG. 8 illustrates the
experimental I -V characteristic response of the nanostruc-
ture 300 for the p-type doped silicon substrate 302 when the
atmosphere is changed from the non-volatile species (N2) to

45 the volatile species (NH3).
As described above, FIGS. 6 and 7 illustrate how the

nanostructure device 300 responds when the nanostructure
device 300 is exposed to a volatile species. Also significant,
however, is the behavior of the nanostructure device 300

50 (shown in FIGS. 8 and 9) when the volatile species is
removed. Specifically, as illustrated in FIGS. 8 and 9, the
performance of the nanostructure device 300 returns to its
normal mode of operation as the volatile species is removed.

Referring to FIG. 8, illustrated are I -V characteristics of
55 the nanostructure device 300 when the volatile gaseous

species NH3 is introduced into an ambient atmosphere. As
the volatile species NH3 is introduced, the I -V curve shifts
to the left. Specifically, prior the introduction of the NH3, the
I -V curve is represented by the purple line. As the NH3 is

60 introduced the I -V curve gradually shifts to the left and is
represented by the yellow line.

Conversely, referring to FIG. 9, illustrated are I -V char-
acteristics of the nanostructure device 300 with the removal
of the volatile gaseous species NH3 and the atmosphere

65 returns to the ambient atmosphere. As the volatile species
NH3 is removed, the I -V curve shifts to the right. Specifi-
cally, prior to the removal of the NH3, the I -V curve is
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detecting a first electrical response of the nanofiber-based
nano-switching/sensing device resulting from the inter-
action of the detectable agent with the at least one
polymer nanofiber.

2. The detection method of claim 1, wherein the detect-
able agent comprises ultraviolet radiation.

3. The detection method of claim 1, wherein the detect-
able agent comprises a first molecule of first volatile gaseous
species.

4. The detection method of claim 1, wherein the detect-
able agent further comprises a second molecule of a second
volatile gaseous species different from the first volatile
gaseous species.

5. The detection method of claim 4, wherein the first
volatile gaseous species comprises one of ammonia, hydro-
gen, a hydrocarbon, a nitrogen oxide, and carbon dioxide.

6. The detection method of claim 5, wherein the second
volatile gaseous species comprises one of ammonia, hydro-
gen, a hydrocarbon, a nitrogen oxide, and carbon dioxide.

7. The detection method of claim 6, wherein detecting the
first electrical response includes generating a warning signal
via an alert device.

8. The detection method of claim 7, wherein the warning
signal comprises a sound alarm.

9. The detection method of claim 7, wherein the first
electrical response varies depending on whether the first
molecule or the second molecule in the detectable agent
interacts with the at least one polymer nanofiber, wherein the
alert device comprises a variable light source configured to
generate a first warning light of a first color when the at least
one polymer nanofiber interacts with the first molecule and
generate a second warning light of a second color when the
at least one polymer nanofiber interacts with the second
molecule.

10. The detection method of claim 1, wherein the detect-
able agent comprises 2,4-dinitrotoluene.

11. The detection method of claim 1 further comprising:
removing the polymer nanofiber-based nano -switching/

sensing device from exposure to the detectable agent to

10
induce a second electrical response in the polymer
nanofiber-based nano-switching/sensing device; and

detecting the second electrical response.
12. The method of claim 11, wherein the polymer nano -

5 fiber -based nano-switching/sensing device includes a
Schottky diode formed in part by the at least one polymer
nanofiber.

13. The method of claim 12, wherein the first electrical
response comprises an alteration of the I -V characteristic

10 response of the polymer nanofiber-based nano -switching/
sensing device.

14. The method of claim 13, wherein the second electrical
response comprises a reversal of the alteration of the I -V
characteristic response of the polymer nanofiber-based

15 nano-switching/sensing device such that the I -V character-
istic response of the polymer nanofiber-based nano-switch-
ing/sensing device returns to what the I -V characteristic
response was prior to the interaction of the at least one
polymer nanofiber with the detectable agent.

20 15. The method of claim 14, wherein the detectable agent
comprises ultraviolet radiation.

16. The detection method of claim 14, wherein the detect-
able agent comprises a volatile gaseous species comprising
one of ammonia, hydrogen, a hydrocarbon, a nitrogen oxide,

25 and carbon dioxide.
17. The method of claim 11, wherein the substrate com-

prises a doped substrate.
18. The method of claim 17, wherein the doped substrate

is a silicon substrate doped with an n-type doping agent and
30 has a silicon resistivity in the range of 1-10 ohms-centimeter.

19. The method of claim 17, wherein the doped substrate
is a silicon substrate doped with an p-type doping agent and
has a silicon resistivity in the range of 1-10 ohms-centimeter.

20. The method of claim 17, wherein the polymer nano -
35 fiber -based nano-switching/sensing device further com-

prises an insulating layer comprised of silicon dioxide
having a thickness of approximately 100-300 nm disposed
between the electrode and the doped substrate.
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