
AAS 18-209

TRAJECTORY DESIGN LEVERAGING LOW-THRUST,
MULTI-BODY EQUILIBRIA AND THEIR MANIFOLDS

Andrew D. Cox � , Kathleen C. Howell y and David C. Folta z

A key challenge in low-thrust trajectory design is generating preliminary solutions
that simultaneously specify the spacecraft position and velocity vectors, as well as
the thrust history. To mitigate this dif�culty, dynamical structures within a com-
bined low-thrust circular restricted 3-body problem (CR3BP) are investigated as
candidate solutions to seed initial low-thrust trajectory designs. The addition of
low-thrust to the CR3BP modi�es the locations and stability of the equilibria, of-
fering novel geometries for mission applications. Transfers between these novel
equilibria are constructed by leveraging the associated stable and unstable mani-
folds and insights from the low-thrust CR3BP.

INTRODUCTION

A key challenge in low-thrust trajectory design is generating preliminary solutions that simulta-
neously deliver spacecraft position and velocity vectors through time, as well as the thrust history.
Although many strategies have emerged to construct spacecraft position and velocity histories in
dynamical models such as the circular restricted 3-body problem (CR3BP), fewer methodologies
are available to identify a preliminary thrust history. Those methods that do exist often rely on
optimization algorithms to solve boundary value or initial value problems that include the control
variables. For example, predictor-corrector shooting algorithms have been applied to generate con-
trol histories along low-thrust transfers between periodic orbits in the CR3BP.1,2 Other authors have
applied low-thrust to natural arcs via optimization processes or machine learning to identifyattain-
able regions.3,4 Similarly, collocation and direct transcription, combined with indirect optimization,
are leveraged to construct non-intuitive orbit geometries by leveraging a low-thrust acceleration.5,6

Rather than rely solely on numerical methods and optimization algorithms to develop a low-
thrust control history, dynamical systems techniques are applied to a combined low-thrust, CR3BP
(CR3BP-LT) model to gain insights to be applied for the construction of preliminary solutions that
include low-thrust arcs. Guidance from the CR3BP is already available for ballistic trajectories;
dynamical structures such as equilibrium solutions, forbidden regions, periodic orbits, and invariant
manifolds describe �ow throughout the system.7 These structures are leveraged in numerous mis-
sion scenarios and are valuable guides for trajectory design.8,9,10,11Similar structures and insights
are available from the CR3BP-LT to supply a larger array of design options than are currently avail-
able for low-thrust trajectory design.12 Subsequently, optimal low-thrust paths that depend strongly
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solution consequently maintains the geometry of the initial guess inx-y-Hnat space. Addition-
ally, the control history, plotted in Figure 12(d), remains similar to the preliminary solution with
� � � 120� for the �rst 5.5 time units and reaches� � � 60� over the duration of the �nal thrust
segments. These similarities are not surprising as the differential corrections algorithm employs
an update that minimizes the variations from the initial design (i.e., a “minimum-norm” update).
While the convergence properties of the algorithm depend on many variables, including the nu-
merical implementation strategy, convergence is generally more rapid and more consistent with the
initial design when the discontinuities are initially small; a poor (i.e., very discontinuous) input
forces the differential corrections algorithm to make more signi�cant changes to the design to meet
the speci�ed constraints. Thus, by leveraging insights from the CR3BP-LT, an initial design is
straightforwardly constructed with minimal discontinuities in both con�guration space and energy
that may be rapidly corrected. In contrast to transfer construction procedures employing only arcs
from the natural CR3BP, these low-thrust dynamical insights supply a preliminary control pro�le
(i.e., � for the low-thrust segments) that subsequently delivers a suitable transfer geometry and a
suitable energy pro�le.

CONCLUSION

By leveraging reasonable simplifying assumptions, the high-dimensional, non-conservative low-
thrust multi-body model is reduced to a simpler, conservative system with properties that supply
useful insights for the generation of preliminary low-thrust trajectory designs. One such property
is the existence of an energy plane that describes the evolution of the natural Hamiltonian term
along any low-thrust arc. The geometry of the plane mitigates the challenge of specifying an initial
guess for the low-thrust acceleration vector magnitude and orientation, i.e., an initial guess for
the control history. To demonstrate the usefulness of this plane, the transit and capture properties
of various low-thrust arcs originating from a ballistic transit path are characterized by employing
simple trigonometric insights from the energy plane. Additionally, a transfer between the Moon
and L 5 Lagrange point is designed by leveraging multiple energy planes to deliver the required
geometric and energetic trajectories.
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(a) The�~�(�) vector lies within the energy plane (b) The energy plane-�xed frame, (x̂00, ŷ00, Ĥ00), is ori-
ented by� and
 relative to the CR3BP-LT frame, (x̂, ŷ,
Ĥ)

Figure 2. The energy plane is located and oriented relative to the rotatingx-y frame
with a third dimension representingHnat

of the energy plane, as depicted in Figure 2(a). The plane is oriented via two rotations: a rotation of
� aboutĤ = Ĥ0to the intermediate frame, (x̂0, ŷ0, Ĥ0), followed by a rotation of
 aboutŷ0 = ŷ00to
a frame �xed in the energy plane, (x̂00, ŷ00, Ĥ00), as seen in Figure 2(b). The �rst angle,�, orients the
low-thrust acceleration vector, as noted in Equation (23). The second rotation angle,
, is related to
the low-thrust acceleration magnitude via the relationship

tan 
 = �alt : (25)

As a short proof that such a plane exists with this orientation, rewrite the general control point
variation in Equation (24) in the energy plane-�xed frame,

�~� =
�
�xC�C
 + �yS�C
 ��HS


�
x̂00+ [�yC� ��xS�] ŷ00+�

�xC�S
 + �yS�S
 + �HC

�
Ĥ00;

(26)

whereC� = cos�, S� = sin�, C
 = cos 
, andS
 = sin 
. A trajectory con�ned to the plane
possesses a zero-valuedĤ00component, thus, rearrange the terms in theĤ00coordinate and equate
it to zero,

�H + tan 
 (�xC� + �yS�) = 0 : (27)

When Equation (25) is substituted for thetan 
 term, Equation (27) is identical to the energy path-
independence relationship in Equation (22). Subsequently, Equation (27) is truly equal to zero; the
out-of-plane component of�~�(�) is identically zero for all� and the low-thrust arc is con�ned to
the energy plane while~alt remains �xed in the CR3BP-LT rotating frame. This plane is leveraged
to link a particular energy change to the geometry of a low-thrust transfer arc. If the geometry
of such a transfer is relatively unperturbed by the low-thrust acceleration vector,� andalt may be
selected to orient the energy plane to deliver a desired energy change based on the existing geometry.
Additionally, these results validate previous �ndings that the energy along low-thrust arcs varies
as a function of the angle between the low-thrust acceleration vector and the spacecraft velocity
vector, i.e., the angle between̂u and~v.12 When~v is aligned withû, the spacecraft moves �uphill�
on the energy plane, increasing theHnat value. Similarly, a spacecraft witĥu ? ~v progresses
across the energy plane at a constant value ofHnat. While these properties of theHnat value are
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straightforwardly derived from the time derivative in Equation (18), the energy plane supplies a
more intuitive representation of the energy variations. Similar to a hiker faced with a steep slope,
a low-thrust spacecraft may leverage sequential energy planes as a set of �switchbacks� to rapidly
increase energy. In fact, the well-known energy-optimal low-thrust spiral that employs a control law
with û = v̂ is simply a strategy to continuously reorient the energy plane such that the spacecraft is
always moving along the steepest energy gradient.

GATEWAY MANIPULATION USING ENERGY PLANES

Bounds on the spacecraft motion in the natural CR3BP, termedforbidden regions, are linked to
the instantaneous value ofHnat along a trajectory, thus, information about the evolution ofHnat
provided by an energy plane is useful to plan for desirable con�gurations of the forbidden regions.15

TheHnat values associated with the natural equilibrium solutions are signi�cant as they represent
critical Hnat values at which the forbidden regions shrink (or grow) to permit (or restrict) access
to speci�c locations in the rotating frame. For example, forHnat values slightly higher than the
Hnat(L1) value, the forbidden regions include a narrow neck near theL1 point, i.e., a �gateway,�
through which trajectories may pass to transit between theP1 andP2 regions. Similar gateways
form asHnat increases past theL2 andL3 energy levels, and theHnat value corresponding to the
L4=5 equilibrium points is the highest energy for which planar motion is restricted by the forbidden
regions in the CR3BP. Accordingly, to enable transit between regions of the rotating frame, theHnat
value along an arc is speci�ed to achieve a desirable forbidden region con�guration. Furthermore,
as the energy along a low-thrust arc is described by an energy plane, the coupled geometry-energy
challenge in navigating a gateway is mitigated by leveraging the energy plane.

To illustrate the manipulation of the forbidden regions via insights from an energy plane, consider
a ballistic path that passes from the system interior (i.e., nearP1) through theL1 andL2 gateways
to the exterior region, as plotted in black in Figure 3(a). Assume that the path must be modi�ed
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Figure 3. The transit behaviors of low-thrust arcs (colored) in the Earth-Moon
CR3BP-LT for alt = 7e-2 and� = 180� originating from different locations on a
ballistic arc (black) are predicted by a simple trigonometric property of the energy
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to prohibit one or both gateway transits. To avoid escape to the system exterior, it is suf�cient to
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reduce theHnat value along the low-thrust arc such that, at the location of theL2 gateway transit, the
spacecraftHnat value is lower thanHnat(L2). Further energy reductions may restrict the spacecraft
to the vicinity ofP2, or prohibit transit into theP2 region entirely by closing theL1 gateway. Given a
low-thrust acceleration magnitude and orientation, limits on the thrust timing are available from the
associated energy planes. The last location along the ballistic arc where low-thrust may be leveraged
to suf�ciently lower theHnat value and prohibit transit through theL2 gateway is computed via a
trigonometric relationship. Let� = 180� to orient the energy plane such thatHnat decreases as the
spacecraft moves toward largerx values. Accordingly, a maximumx value is computed as follows,

maxxthrust = xL2 �
1
alt

�
Hnat;0 �Hnat(L2)

�
; (28)

whereHnat;0 is the energy of the ballistic arc andxL2 is the position ofL2 on thex-axis. If the
low-thrust force is switched on after the spacecraft has progressed to a location such thatx >
maxxthrust, the energy on the resulting low-thrust arc will not decrease suf�ciently to close theL2
gateway. Thus, when the spacecraft reachesxL2 , the spacecraft may escape the system through the
L2 gateway. A similar minimumx-coordinate is available that marks the last location along the path
where the low-thrust force may be activated to close theL1 gateway atxL1 ,

minxthrust = xL1 �
1
alt

�
Hnat;0 �Hnat(L1)

�
: (29)

These bounds, identi�ed as black triangles in Figure 3(b), are employed to categorize a set of low-
thrust arcs, all originating from the ballistic path at differentx locations. Red arcs, plotted in the
xy-plane in Figure 3(a), initiate thrusting atx < minxthrust. Similarly, green arcs depart the
ballistic arc at locations such thatx > maxxthrust. Arcs that commence thrusting between these
two bounds are plotted in blue. The energy plane analysis predicts that red arcs will fail to transit the
L1 gateway as the energy along these trajectories decreases below theL1 gateway energy, i.e., theL1
gateway is closed when the low-thrust arc arrives at the gateway. This prediction is supported by the
results in Figure 3(a); all of the red arcs remain in the interior region. The energy planes associated
with these arcs, plotted as dashed lines in Figure 3(b), visually demonstrate that the energy along
each red arc decreases toHnat(L1) before or atxL1 . In contrast, as the blue arcs activate thrust
forces suf�ciently late to avoid closing theL1 gateway before passing through, they may transit into
theP2 region but will not pass through theL2 gateway. This result is also supported by the plot,
as many blue arcs enter theP2 region and none transit theL2 gateway. However, a subset of these
trajectories do not pass through theL1 gateway; while the energy on these paths at theL1 gateway
is suf�ciently high to permit transit, transit is not guaranteed. Finally, the green arcs add thrust at
locations wherex > maxxthrust, thus, theHnat values on these arcs are suf�ciently high to allow
transit through theL2 gateway; again this is a suf�cient condition and does not guarantee transit,
as evident from the con�guration space representation in Figure 3(a). This analysis demonstrates
that the energy plane is a useful tool to predict the transit or capture behavior of a low-thrust arc.
The geometry of the ballistic transit arc employed in this example (seen in black in Figure 3(a)) is
only slightly modi�ed by a low-thrust force during the approach to theP2 vicinity, thus, the energy
along the low-thrust arcs is straightforwardly controlled as the path moves predictably along the
prescribed energy plane. However, as the arcs traverse the dynamic regions nearL1, P2, andL2, the
trajectory geometry is signi�cantly affected by the addition of low-thrust and, thus, is more dif�cult
to predict. Regardless of these sensitivities, the energy along each low-thrust arc is con�ned to the
energy plane and transit (or capture) is well-predicted by the suf�cient conditions derived from the
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energy history. This strategy is also applicable to scenarios other than gateway transit behavior; any
problem that requires a speci�c energy value at a speci�c location (i.e., targeting a control point) is
facilitated by the CR3BP-LT energy planes.

PLANAR LOW-THRUST EQUILIBRIUM SOLUTIONS

While insights from the energy plane are useful to modify ballistic paths, dynamical structures
from the CR3BP-LT supply additional geometries that may be leveraged to facilitate low-thrust
trajectory design. One such set of structures are the equilibrium solutions associated with the planar
(2D) dynamics in the CR3BP-LT; these solutions supply an initial characterization of the local
and global dynamics when low-thrust is included in the model. Linearizations of the nonlinear
dynamics relative to the equilibria describe local stable, unstable, and center manifolds. Global
invariant manifolds are constructed by transitioning the linear results to the nonlinear model.15

Manipulations of the low-thrust acceleration vector directly in�uence the number and location of
equilibrium solutions in the CR3BP-LT, which subsequently affects the existence and characteristics
of various nearby dynamical structures. Accordingly, the equilibrium solutions in the CR3BP-LT
are relevant to low-thrust mission applications, particularly as the equilibria locations evolve relative
to the familiar CR3BP equilibrium points.

To initiate a fundamental understanding of the �ow in the CR3BP-LT, consider the simpli�ed
planar dynamics with a �xed~alt vector, consistent with the previously presented simpli�cations.
The equilibrium solutions solve Equations (13) and (14) when all time derivatives (_x, �x, _y, �y) are
zero. In the natural CR3BP (alt = 0), �ve such equilibria exist, i.e., theLagrange pointsor libration
points.15 As the addition of the perturbing low-thrust acceleration introduces two new variables,
the thrust orientation angle,�, and magnitude,alt, the locations of the equilibrium solutions are
no longer �xed.12,13,14Given a value ofalt, the locations of the equilibrium solutions vary with
�, as plotted in Figure 4. The location of each equilibrium solution identi�es a point in thexy-
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Figure 4. Low-thrust equilibrium solutions (colored by �) in the Earth-Moon
CR3BP-LT for alt = 7e-2 and� 2 [��; �]; the natural equilibrium solutions are
included as black asterisks

plane where the low-thrust acceleration vector offsets the natural acceleration vector to yield a
net-zero acceleration in the rotating frame. Accordingly, the closed, colored contours of equilibria
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depicted in Figure 4 are termedzero acceleration contours(ZACs).12 Each ZAC represents a set of
equilibria at a �xedalt value for the full range of� values with at least one equilibrium solution on
each ZAC for every value of�. To identify these structures independently of the natural equilibria
point solutions, let the ZACs nearL1 andL2 be notatedE1 andE2, and let the C-shaped ZAC
that includes points nearL3 be labeledE3. These designations are speci�c to thealt value that
yields the ZACs. For instance, whenalt is small, the ZACs remain near the natural solutions,
yielding �ve ZACs: E1; E2; : : : ; E5. However, asalt increases, ZACs merge. In this investigation,
alt = 7e-2 is employed for consistency; at this low-thrust magnitude, theE3; E4 andE5 structures
are merged into theE3 ZAC. Distinct sets of equilibria at speci�c� values are denoted via function
notation, i.e.,E3(�60� ) speci�es the low-thrust equilibria onE3 at� = �60� . To identify speci�c
equilibrium points on a ZAC, or within a set of equilibria at a speci�c angle on a ZAC, the notation
Eji (�) is employed, wherei references the ZAC,Ei, andj designates the individual equilibria in
order of ascendingHlt value. For example,E3(�60� ) includes three equilibria, thus,E1

3(�60� )
corresponds to the equilibria with the lowestHlt value,E2

3(�60� ) possesses an intermediateHlt
value, andE3

3(�60� ) is characterized by the highestHlt value. In the absence of a superscript, e.g.,
E1(�60� ), only one equilibrium solution exists on the speci�ed ZAC at the given angle.

As the locations of the low-thrust equilibrium solutions change with variations inalt and�, the
stability of each point also varies. The stability corresponding to a low-thrust equilibrium solution is
determined by inspecting the eigenvalues of the Hessian matrix,@ _~q=@~q, evaluated at the equilibrium
point location where~q = fx; y; _x; _ygT is the state vector and_~q re�ects the time derivatives of
the states consistent with Equations (13) and (14).12,14 Real eigenvalues (in the complex plane)
represent stable (negative) and unstable (positive) motion, while eigenvalues on the imaginary axis
represent oscillatory motion. Combinations of the two types are also possible and are characterized
by spiral-shaped �ow patterns. Due to the Hamiltonian nature of the CR3BP-LT with~alt �xed in
the rotating frame, eigenvalues occur in pairs, either as real pairs symmetric across the imaginary
axis (i.e.,��) or as complex conjugate pairs. The former pair, characterized by stable and unstable
motion, is termed asaddle, while a pair of imaginary eigenvalues is denoted acentermode; the
combined saddle-center (e.g., spiral) motion is termed amixedmode.

The linear modes associated with an equilibrium solution identify the local dynamics and can
predict nonlinear �ow patterns. For example, oscillatory motion (periodic or quasi-periodic) is
available near an equilibrium solution with a center mode, or a center subspace. Similarly, trajec-
tories that asymptotically approach an equilibrium point in forward and reverse time are guided by
the stable and unstable manifolds of the saddle mode. The four-dimensional phase space near each
planar equilibrium point is described by four eigenvalues (two pairs), or two modes. In practice,
these modes occur in four different combinations: (i) saddle� center; (ii) center� center; (iii)
mixed� mixed; and (iv) saddle� saddle. The Earth-Moon CR3BP-LT equilibria foralt = 7e-2
are characterized by the �rst three combinations at various locations in thexy-plane, as apparent
in Figure 5. The dynamics near equilibria onE1 andE2 are consistent with the saddle� center
motion associated withL1 andL2, as observed in Figure 5(b). In contrast,E3 includes saddle�
center motion on the �inner ring,� center� center motion on the �outer ring,� and some mixed�
mixed motion near the tips of the C-shaped contour. Due to the proximity of different linear modes,
the low-thrust dynamics in some locations are very sensitive to the value of� employed to orient
the low-thrust vector. For instance, both center� center and saddle� center equilibrium solutions
are available near theL4 andL5 points at the samealt value and opposite (by180� ) � values. As
a result, the global �ow in a single area (e.g., nearL4=5) is controllable via manipulations of the
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Figure 5. Low-thrust equilibrium solutions (colored by stability) in the Earth-Moon
CR3BP-LT for alt = 7e-2 and� 2 [��; �]; the natural equilibrium solutions are
included as black asterisks

low-thrust acceleration vector and suitable parameters may be identi�ed to yield �ow structures for
inclusion in low-thrust trajectories.

STABLE AND UNSTABLE INVARIANT MANIFOLDS

The linear dynamics in the vicinity of the low-thrust equilibrium points are straightforwardly
transitioned to the full nonlinear model to supply insight into global �ow patterns in the CR3BP-LT.
Whereas the eigenvalues of the Hessian matrix describe the type of motion (e.g., stable, unstable,
oscillatory), the eigenvector associated with each eigenvalue de�nes the direction of the �ow in
four-dimensional space. That is, the eigenvector associated with the positive, real eigenvalue lies
tangent to the unstable manifold near the equilibrium solution. Similarly, the eigenvector associated
with the negative, real eigenvalue is tangent to the stable manifold near the equilibrium point. Thus,
by perturbing the equilibrium solution along the stable or unstable eigenvector and propagating the
resulting trajectory in the nonlinear model, a representation of the global stable or unstable invariant
manifold associated with the equilibrium point is constructed, as depicted for the naturalL1, L2,
andL3 saddle modes in Figure 6. While these manifolds originate tangent to the eigenvectors
(represented by small, colored arrows) near the equilibria, the nonlinear �ow diverges from the
linear approximation as the distance from the equilibrium solution increases. The natural triangular
points, characterized by center� center modes, do not possess stable or unstable manifolds to guide
�ow into and out of theL4 orL5 regions. Additionally, note that theHnat value along each manifold
remains constant, as evident in Figure 6(b), asHnat is a constant integral of the motion in the natural
CR3BP.

Similar manifolds are constructed in the Earth-Moon CR3BP-LT, but these low-thrust structures
include key differences. For example, the Earth-Moon low-thrust equilibria foralt = 7e-2 and
� = 180� , plotted as black diamonds in Figure 7(a), are similar in location and stability to the
natural equilibria, though theE3(180� ) solutions not located on thex-axis (i.e.,E2

3(180� ) and
E3

3(180� )) lie noticeably closer to the Moon than the natural triangular points. Furthermore, the ge-
ometries of the stable and unstable manifolds corresponding to theE1(180� ) andE2(180� ) points
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terized by center� center modes, represented by circles about these equilibria
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from the energy of the originating equilibrium solution

Figure 7. Manifolds of the Earth-Moon CR3BP-LT equilibria for alt = 7e-2 and
� = 180� maintain a similar geometry and qualitative stability characteristics as the
natural equilibria manifolds, but vary in energy

remain very similar to the natural manifolds plotted in Figure 6(a). In addition to the shifted trian-
gular point locations, a key difference between the low-thrust equilibria manifolds and the natural
equilibria manifolds is the energy pro�le for each manifold, plotted in Figures 7(b) and 6(b), re-
spectively. WhileHnat is constant along the ballistic CR3BP arcs,Hnat varies with distance from
the originating state along the low-thrust structures. Accordingly, the low-thrust equilibrium point
manifolds may be employed to transit throughout thexy-plane while simultaneously delivering an
energy change prescribed by the associated energy plane.
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TRANSIT DESIGN LEVERAGING MANIFOLD ARCS

To illustrate the use of manifolds associated with the equilibrium points and the low-thrust energy
plane, consider the design of a transfer from the lunar vicinity to a stable orbit near the natural
Earth-MoonL 5 point. A design may be constructed from the manifolds associated with theL 1

andL 2 equilibria that depart the lunar vicinity and move throughout thexy-plane. However, these
manifolds, plotted in Figure 6(a), do not approach theL 5 region, even when propagated for longer
time intervals than depicted in the plot. Furthermore, these natural manifolds maintain a �xedHnat

value consistent with the originating equilibrium point and, thus, do not approach the much higher
Hnat (L 5) value. An additional complication arises from the fact thatL 5 is characterized by center
� center motion and, thus, possesses no manifolds to further attract the �ow. Farrés mitigates this
problem when designing similar transfers in the Sun-Earth system that employ an additional force
using a solar sail by using a “brute force search” to identify sail orientations and states near the
triangular point that, when propagated in reverse time, may be linked to theE1(0) or E2(0) unstable
manifolds in both position and energy to construct an end-to-end transfer design.13 By leveraging
insights from energy planes and employing equilibrium solutions in the CR3BP-LT located nearL 5

with nontrivial saddle modes, a transfer is straightforwardly designed without a grid search.

A transfer design that incorporates both the energetic and geometric differences between theL 5

and lunar regions is facilitated by leveraging manifolds of the low-thrust equilibria. Whereas the
natural CR3BP equilibria manifolds maintain �xedHnat values,Hnat varies along the low-thrust
manifolds associated with the CR3BP-LT equilibria, as described by the energy plane corresponding
to the� andalt values of the originating equilibrium point. Accordingly, theHnat value along each
manifold increases in the direction described by� . The E1 andE2 low-thrust equilibria remain
within a small, bounded area (in position andHnat ) regardless of� , but the orientation of the
energy plane associated with each equilibrium point varies linearly with� . Additionally, recall that
theE1 andE2 structures foralt = 7e-2, depicted in Figure 5(b), are entirely characterized by saddle
� center modes, thus, unstable manifolds departing the lunar region are available for all values of
� . A survey of these manifolds over the full range of� values indicates that, while small geometric
differences are apparent as� varies, the general �ow pattern (as visualized in Figure 7(a)) remains
consistent. Thus, the energy on these manifolds may be designed relatively independently of the
manifold geometry by selecting an� value to supply an appropriate energy plane, i.e., an energy
plane sloped in a desirable direction.

To develop an initial guess for a transfer between the Moon andL 5, the manifolds of an Earth-
Moon CR3BP-LTE2 solution are explored (alternatively, manifolds corresponding to anE1 point
may be leveraged). To maximize theHnat value available atL 5 on a low-thrust arc originating
from one of these equilibria, the energy plane is aligned with the Moon-L 5 line, e.g.,� = � 120� ,
as plotted in Figure 8. However, even with the plane oriented to maximize the energy at theL 5

location, the slope of the energy plane is too shallow to reachHnat (L 5) at theL 5 position, visualized
as an “energy gap” between the energy plane and theL 5 point in x-y-Hnat space plotted in Figure
8(b). Accordingly, a single manifold originating from anE2 point cannot reach the naturalL 5 point
with the desired energy. Additional energy manipulations are required to construct a set of multiple
“energy switchbacks” that reach both theL 5 position and energy level.

To facilitate an energy increase fromHnat (L 2) to Hnat (L 5), low-thrust �ow originating near the
naturalL 5 point is linked to low-thrust �ow near the Moon. In contrast to the natural CR3BP, the
CR3BP-LT possesses equilibrium points nearL 5 on theE3 structure with saddle� center motion.
In the Earth-Moon CR3BP-LT withalt = 7e-2, these equilibria, plotted as red points in Figure 5(a),

14



(a) Planar projection of the energy plane (b) Edge-on view of the energy plane; the naturalL 5

point possesses anH nat value higher than those attain-
able on the energy plane at the location of theL 5 point

Figure 8. The energy plane associated with the Earth-Moon CR3BP-LTE2(� 120� )
point for alt = 7e-2 is too shallow to reachHnat (L 5) at the L 5 location

are located nearL 5 when� � � 60� . While the locations and energies of the equilibria onE1 and
E2 vary only a small amount with� , theE3 equilibrium points shift over large distances throughout
thexy-plane as� varies. Accordingly, only theE 1

3(� 60� ) solution nearL 5 supplies manifolds that
evolve suf�ciently to attract �ow. The energy pro�les of these manifolds are de�ned by the energy
plane oriented by� = � 60� , i.e., theHnat value along each manifold increases along theP1 ! L 5

line, as depicted in Figure 9. A transfer fromE2(� 120� ) to E 1
3(� 60� ) may leverage �ow along

(a) Planar projection (b) 3D view inx-y-H nat space

Figure 9. The energy planes corresponding to the low-thrust equilibrium points
E 1

3 (� 60� ) near L 5 and E2(� 120� ) contain all trajectories originating from the two
equilibria; control adjustments at the intersection of the two planes facilitates trans-
fers between the two points

both energy planes. Such a transfer originates at theE2(� 120� ) point and subsequently �ows along
the corresponding energy plane. Then, at an intersection between theE2(� 120� ) energy plane and
theE 1

3(� 60� ) energy plane, the low-thrust parameters may be switched to match those associated
with theE 1

3(� 60� ) point, i.e.,� is switched from� 120� to � 60� . The resulting propagation then

15


	Introduction
	Dynamical Model Development
	

	

