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A NOVEL MULTI-SPACECRAFT INTERPLANETARY GLOBAL
TRAJECTORY OPTIMIZATION TRANSCRIPTION

Sean W. Napier ¥ Jay W. McMahon?

As the frontier of space exploration continues to advance, so does the design com-
plexity of future interplanetary missions. This increasing complexity includes a
class of designs known as Distributed Spacecraft Missions; missions where mul-
tiple spacecraft coordinate to perform shared objectives. Current approaches for
global trajectory optimization of these Multi-Vehicle Missions (MVMs) are prone
to shortcomings, including laborious iterative design, considerable human-in-the-
loop effort, treatment of the multi-vehicle problem as multiple, separate trajec-
tory optimization subproblems, and poor handling of coordination objectives and
constraints. This leads to suboptimal solutions where the whole is less than the
sum of its parts. There are only a handful of software platforms in existence
capable of fully-automated, rapid, interplanetary global trajectory optimization,
including the Gravity Assisted Low-thrust Local Optimization Program (GAL-
LOP), and the Evolutionary Mission Trajectory Generator (EMTG). However,
none of these tools is capable of performing such tasks for MVM designs. We
present a fully-automated technique which frames interplanetary MVMs as Multi-
Objective, Multi-Agent Hybrid Optimal Control Problems (MOMA HOCP). First,
the basic functionality of this technique is validated on the single-vehicle problem
of reproducing the Cassini interplanetary cruise. The technique is then applied to
explore the possibility of a dual-manifest mission to the Ice Giants, Uranus, and
Neptune. A single trajectory with flybys of both planets has been shown to be
infeasible with only a single spacecraft anytime between 2020 and 2070.

INTRODUCTION

Framing interplanetary spacecraft trajectory optimization as a hybrid optimal control problem
(HOCP) has proven an effective approach.?2 In this framework, trajectory optimization is a Mixed-
Integer Programming (MIP) problem. Some decision variables are discrete (integers) while others
are continuous (floating point), necessitating distinct optimization routines for each category of
variable. Furthermore, the resulting mission designs are points within a solution space spanned by
multiple objectives (i.e., minimum fuel versus minimum time of flight). Thus, in order to effectively
characterize the solution space for a given mission design problem, a multi-objective HOCP frame-
work is essential. However, while tools exist to solve interplanetary multi-objective HOCPs for a
single spacecraft, no tool exists to optimize multi-spacecraft, multi-objective global optimization
problems. Addressing the shortcomings of current approaches to MVVM optimization, including the
methods for handling of coordination objectives and constraints, are key to enabling the design of
future MVMs.
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This work explores the application of a fully automated (i.e., requiring no initial guess) Multi-
Objective Multi-Agent (MOMA\) optimization to an interplanetary global trajectory optimization
problem: designing an Ice Giant Multi-Mission. The individual spacecraft in the MVM are treated
as agents, i.e., intelligent tokens, that have optimizable states and behavior, which cooperate to
achieve coordinated objectives in a decision space bounded by multiple coordination constraints.*>
With this technique, the user only needs to specify the bounds of the MVVM problem, and the MOMA
HOCP scheme optimizes the solution space with no human-in-the-loop effort. Further, in treating
the constituent spacecraft as agents within a coupled decision space, resulting point solutions are
more indicative of the true behavior of the solution space compared to those gleaned from an ap-
proaches where the MVM is split into separate sub-problems.

The optimization technique of this work is comprised of four nested components: an outer-loop
which only optimizes discrete variables via a population based method, an inner-loop stochastic
global search method which traverses the continuous variable decision space bounded by its outer-
loop decision vector, a local optimizer which finds a local minima in the inner-loop’s global search
space, and a trajectory transcription to evaluate a hybrid decision vector with respect to an objective.
The contributions of this paper are threefold: 1) an outer-loop transcription to pose a MVM as a
single, coupled trajectory optimization problem, 2) three new outer-loop coordination constraints,
and 3) an outer-loop coordination objective approach.

PROBLEM FORMULATION

The goal of a multi-objective optimization problem is to find the optimal non-dominated front
that depicts the fundamental trades between objectives.b The outer-loop performs this task effi-
ciently via a cap and optimize approach.!! For a given decision vector, one objective, such as V,
is optimized by the inner-loop, while secondary objectives are treated caps which the outer-loop
imposes on inner-loop decision variables. The outer-loop only optimizes integer decision vectors,
where integers encode items such as gravity assist targets. Each outer-loop decision vector defines
a trajectory optimization problem which is in turn optimized by an instance of the inner-loop. The
result of this optimization is passed back to the outer-loop for ranking. Secondary objectives for
each inner-loop solution are evaluated by the outer loop during ranking. The larger the population
size in the outer-loop, the more instances of the inner-loop must be run, ideally in parallel.

The outer-loop uses the Non-Dominated Sort Genetic Algorithm-II (NSGA-11).57 In this work,
each point on the outer-loop’s Pareto front represents a spacecraft fleet. One level down, the inner-
loop exclusively chooses continuous decision variables such as launch date, Cs, or time of flight
(TOF) between flyby targets. The choice of continuous variables is dependent upon the choice
of discrete variables. During the course of this work, the authors have experimented with differ-
ent versions of the inner-loop to improve reliability. NSGA-I1I reliably finds the multi-objective
Pareto front for a given problem space, but the quality of each point on this Pareto front is lim-
ited by the power of the inner-loop to reliably find the global optimum. The first iteration of this
inner-loop used an evolutionary algorithm known as Differential Evolution (DE/best/2/bin).? This
produced results that varied widely when applied to a modestly wide global search space. This ap-
proach was improved wrapping a Monotonic Basin Hopping (MBH) global search algorithm around
DE/best/2/bin, at which point DE/best/2/bin proved a modestly reliable local optimizer. MBH hops
through the global search space across local minima found by the local optimizer to arrive, given
ample run time, within statistical striking distance of the global minimum of the cost function.’
Finally, trajectories are transcribed using the Vinko-1zzo Multiple Gravity Assists with one Deep



Space Maneuver (MGA1DSM) transcription, a direct method that is easy to formulate and ideally
suited to optimization with evolutionary algorithris.

MBH without a gradient search was tested as a standalone inner-loop, but MBH and DE/best/2/bin
were found to perform better together than either did alone. The MBH+DE/best/2/bin inner-loop's
performance is rst demonstrated on reproducing Cassini's EVVEJ interplanetary cruise, proving
the functionality of the inner-loop to nd the global optimum trajectory, in terms of minimuk
Cs, Right Ascension, and Declination of the launch asymptote (RLA and DLA) are free to vary
while the launch date is constrained to occur between Oct 1 and Oct 31 1997. The TOF of each tra-
jectory phase was bounded to withirlO days of the nominal Cassini trajectory phase ight times.

No initial guess seed was provided to the inner-loop optimizer. While evolutionary algorithms make
suitable breadboards for exploring a problem which cannot leverage gradient information, they lack
the ability to handle most constraints that were of interest in the problem posed by this work. The
latest inner-loop uses MBH as the global search method and MATL&®&ilsconas the local opti-
mizer, which enables faster acquisition of solutions and explicit linear constraints.

All the code in this work is written in MATLAB. Planetary orbit states were acquired from the JPL
Horizons database at a single epoch, and were propagated inside the optimizer, along with spacecraft
trajectories, using a universal variable Kepler propagator. A single impulsive maneuver is allowed
between each pair of yby bodies. With the inner-loop's functionality validated, the full MOMA
HOCP technique was put to work on an Ice Giant Multi-Mission preliminary design. The mission
design consists of two high-thrust chemical propulsion spacecraft, one of which must intercept
Uranus and the other Neptune. The MOMA HOCP optimizer is tasked with optimizing the yby
sequences for each spacecraft for tot&, while also trading against time of ight. All spacecraft
are subject to the initial coordination constraint of sharing a launch vehicle. This constraint is
formulated by holding the launch epodBz, RLA and DLA as identical for all spacecraft in the
eet. This novel active coordination constraint approach guides the optimizer through the true
multi-mission solution space, coupling the performance of one spacecraft to the other.

MVM Outer-Loop Transcription

An outer-loop integer decision vector is treated as a chromosome by the NSGA-II algorithm.
Each row is a vector corresponding to the trajectory of a single spacecraft. Each column contains
a gene whose value is the index from a particular decision variable menu. In each row, the rst
four elements comprise a header of bounding parameters: launch window bounds, global TOF cap,
Cs3 bounds, and minimum number of shared yby genes. Beyond this header, all remaining genes
encode yby targets. The destination planet is xed — it does not evolve during successive genera-
tions of the NSGA-II algorithm. While the header parameters need not necessarily be identical for
both spacecraft, the shared launch asymptote constraint forces them to be. For example:
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Table 7

High Cs, SHFB Date | Cs (km?/s?) | RLA DLA V (km/s) | Altitude (r pranet)
Spacecraft 1 — — — — — —
Launch 16 May 2030 150.0 | 339.3 -37.0 — —
DSM 1 (km/s) 30 May 2034 — — — 7.584 —
Encounter Uranus | 16 May 2046 — — — — —
Spacecraft 2 — — — — — —
Launch 16 May 2030 150.0 | 339.3 -37.0 — —
DSM 1 (km/s) 16 May 2030 — — — 1.854 —
Encounter Neptune 16 May 2046 — — — — —

Figure 9: (a) The highC3 SHLV study's minimum V solution and (b), the higltz SHFB study's,
the minimum V solution.

CONCLUSIONS

In this paper, we have described the formulation of a novel technique for Multi-Objective, Multi-
Agent, Hybrid Optimal Control optimization applied to interplanetary multi-spacecraft global tra-
jectory optimization. The results of this work demonstrate both promise for the current technique,
while also highlighting the need for improvement in the reliability of the inner-loop, and the pop-
ulation size of the outer-loop. High€s studies produced arti cially lower V solutions in part
due to the inner-loop's inability to optimize complex trajectories with multiple ybys. Optimal
solutions produced by the outer-loop also highlighted need for ybys that the outer-loop did not
nd autonomously, which is likely due to the small population size used. This shortcoming will
be addressed with greater computing resources. Future work will focus on improving the robust-
ness of the inner-loop, acquiring more signi cant distributed computing resources to evaluate larger
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search spaces, and exploring performance under the in uence of a wider variety of coordination
constraints/objectives.
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Figure 6: Low Cj3 study results: (a) and (b) show, respectively, the Y-Z and X-Y views of Pareto
front for the minimum shared flyby genes constraint (SHFB) study while (c) and (d) show analogous
views for the shared trajectory phases constraint (SHTR) studly.

Fig. 6 depicts the Pareto fronts of V versus minimaxed TOF for the fleet at the 22" outer-loop
generation for the minimum shared flyby genes constraint SHFB and SHTR constraint studies. Each
circle represents a spacecraft fleet. The size of each marker qualitatively reports the total number
of intermediate flyby targets used by the spacecraft in the fleet with the least amount of flybys. In
these plots, there are two sizes: zero intermediate flybys, and one intermediate flyby. The SHTR
study produces a front with a noticeably sparser tail.

The low Cj studies both found the minimum V solution to be one that shares no trajectory
phases at all, but where each spacecraft performs a flyby of one identical target (Jupiter, white
orbit). The result is shown in Fig. 7. Red star markers depict events including launch, deep space
maneuvers, and flybys. The Neptune probe performs a solar system escape maneuver to achieve
the energy change needed to reach Neptune. That is, the spacecraft launches from Earth, performs
a Jupiter flyby to target the Sun, and performs a solar flyby effectively achieving an Oberth Effect
energy increase to reach Neptune, analogous to the maneuver designed by Arora et al. for a Kuiper
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Table 5

Low C3, SHFB Date | Cz (km?/s?) | RLA DLA V (kmis) | Altitude (Fpianet)
Spacecraft 1 — — —_ — — —
Launch 1 May 2032 25 319.4 41 — —
DSM 1 (km/s) 5Jul 2034 — — — 4.981 —
Flyby Jupiter 24 May 2036 — — — — 50.0
DSM 2 (km/s) 24 May 2036 — — — 2.622 —
Encounter Uranus 7 May 2044 — — — — —
Spacecraft 2 — — — — — —
Launch 1 May 2032 25 319.4 4.1 — —
DSM 1 (km/s) 11 Jun 2032 — — — 4528 —
Flyby Jupiter 27 Dec 2036 — — — — 50.1
DSM 2 (km/s) 1 Mar 2039 — — — 5.591 —
Encounter Neptune 1 Jan 2045 — — — — —

Belt Object encounter.’® This mission is summarized in Table 5 and has a total ~V of 18 km/s with
a TOF of 12.3 years for the slowest spacecraft to reach its target.

Figure 7: Minimum V solution for the low C3 SHFB study.
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Figure 8: High C3 studies: All fleets shown after 22 outer-loop generations. (a) and (b) depict the
Pareto front for the shared launch asymptote constraint only (SHLV) while (c) and (d) offer views
of the SHTR study, and (e) and (f) depict the front for the SHFB study.
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Table 6

High C3, SHLV Date | Cz (km?/s?) | RLA DLA V (km/s) | Altitude (Ipianet)
Spacecraft 1 — — — — — —
Launch 8 Jun 2030 121.2 40.4 -5.2 — —
DSM 1 (km/s) 8 Sep 2030 — — — 4,546 —

Encounter Uranus 17 Nov 2039 — — — — _

Spacecraft 2 — — — — — —
Launch 8 Jun 2030 121.2 404 -5.2 — —
DSM 1 (km/s) 13 Dec 2033 — — — 10.596 —
Flyby Jupiter 12 Oct 2034 — — — — 93.9
DSM 2 (km/s) 20 Oct 2035 — — — 0.047 —

Encounter Neptune 9 Oct 2039 — — — — —

For the high C3 studies, results where in higher abundance. The Pareto fronts for each are cap-
tured in Fig. 8. In (c) and (d) the structure of the front is markedly sparser than either of its less
tightly constrained counterparts. Due to the unfavorable phasing of Uranus and Neptune during the
study window, coupled with the constraint against using inner planet flybys to leverage an energy
increase, numerically feasible solutions were few and far between. No practically feasible or near-
practically feasible solutions were found in either the low or high Cz SHTR studies. Among other
concerns to be addressed in future work, a more thorough search is needed. In the SHFB study
shown in (e) and (f), the Pareto front exhibits a distinct tail at the 10-year TOF mark, where local
families of otherwise equivalent V solutions exist for all TOFs over 10-years. Across all studies,
one observes that launch dates later than 1/1/2032 have markedly fewer, if any, solutions. This is
due mainly to the fact that Uranus’ heliocentric angular velocity is greater than Neptune’s, which
means the Ice Giants’ relative difference in ecliptic right ascension grows as time moves forward.
Conversely, the earlier the launch date, likely up until the era of the Voyager launches, the number
of feasible opportunities improves as the planets approach conjunction.

In Fig. 8a, the high C3 SHLV study’s minimum V solution finds a trajectory whose geometry
suggests that the Neptune probe would benefit from an Earth flyby, while the Uranus probe could
potentially realize a ballistic trajectory with a slightly higher C3. Since the bounds of this study did
not allow for inner planet flybys, an Earth flyby was not an available option, but would arguably
eliminate the large DSM if a flyby opportunity exists. In (b), the high C3 SHFB study, the minimum

V solution in this study is the most promising found among all studies run yet. Its primary
shortcoming is the clear need for a Jupiter flyby which was simply not found due to the relatively
small span of the search given by the small outer-loop population. Secondarily, the ‘DSM’ on the
Neptune trajectory is performed on the launch date which implies a need for a higher C3 to eliminate
this maneuver. Variants of this trajectory are found across different flight times, as captured by the
tail of the Pareto front. Mission itineraries for the high C3 SHLV and SHFB studies are given in
Table 6 and Table 7 respectively.
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Table 7

High Cs, SHFB Date | Cz (km?/s?) | RLA | DLA V (km/s) | Altitude (Fpianet)
Spacecraft 1 — — — — — —
Launch 16 May 2030 150.0 339.3 -37.0 — —
DSM 1 (km/s) 30 May 2034 — — — 7.584 —
Encounter Uranus 16 May 2046 — — — — —
Spacecraft 2 — — — — — —
Launch 16 May 2030 150.0 339.3 -37.0 — —
DSM 1 (km/s) 16 May 2030 — — — 1.854 —
Encounter Neptune | 16 May 2046 — — — — —

Figure 9: (a) The high C3 SHLV study’s minimum V solution and (b), the high C3 SHFB study’s,
the minimum V solution.

CONCLUSIONS

In this paper, we have described the formulation of a novel technique for Multi-Objective, Multi-
Agent, Hybrid Optimal Control optimization applied to interplanetary multi-spacecraft global tra-
jectory optimization. The results of this work demonstrate both promise for the current technigue,
while also highlighting the need for improvement in the reliability of the inner-loop, and the pop-
ulation size of the outer-loop. Higher C3 studies produced artificially lower V solutions in part
due to the inner-loop’s inability to optimize complex trajectories with multiple flybys. Optimal
solutions produced by the outer-loop also highlighted need for flybys that the outer-loop did not
find autonomously, which is likely due to the small population size used. This shortcoming will
be addressed with greater computing resources. Future work will focus on improving the robust-
ness of the inner-loop, acquiring more significant distributed computing resources to evaluate larger
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search spaces, and exploring performance under the influence of a wider variety of coordination
constraints/objectives.
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