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The Comparison tab of the CyAN app allows end-users to temporally view changes in 

cyanoHAB abundance across multiple locations of interest for an annual rolling time period (Fig. 

5b).  This analysis requires selecting two or more locations for comparison as described under 

Case #1.  The user is provided with a list of selected locations, names, latitude and longitude 

coordinates, current cyanoHAB abundance, and recent changes.  The Compare Statistics tab 

includes the areal maximum value of the pixel location and pixel count (3 × 3-pixel maximum 

cyanobacterial abundance) and abundance delta value.  The Blooming Chart subtab provides a 

time-series plot of cyanobacterial abundance for selected locations. 

 
Fig. 5.  (a) Selecting a satellite thumbnail image allows the user to visualize the complete 
satellite tile for the location of interest for spatial patterns. (b) Example of selecting the Compare 
tab allows the user to visualize temporal comparisons amongst different locations. Each line 
graph represents a single pixel that contains the geographic coordinate. 
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VT Lake Carmi Lake Carmi 44o 58’ 13" -72o 52’ 46" S11-S12 

VT 
Lake 

Memphremagog Whipple Point 44o 57’ 23" -72o 13’ 37" 
S11-S12 

VT Mallets Bay Camp Norfleet 44o 35’ 3" -73o 13’ 44" S11-S12 

VT 
Mississquoi 

Bay Rock River Bay 44o 59’ 32" -73o 5’ 53" 
S11-S12 

VT St. Albans Bay Mill River 44o 47’ 50" -73o 8’ 54" S11-S12 
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 Fig. 8. Screen shots of mobile CyAN mobile app time series charts for (a) Upper Klamath Lake, 
(b) Odell Lake, (c) Drews Reservoir, and (d) Detroit Lake.  Each line graph represents a single 
pixel that contains the geographic coordinate listed in Table 1.  Time series screen shots 
correspond to GIS comparisons in Fig. 9 and Oregon cyanoHAB advisories.  
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analyses, such as inland and coastal water quality data. The European software package is the 

SeNtinel Application Platform (SNAP) available from the European Space Agency.  SNAP also 

is an open-source platform and focuses on the exploitation of earth observation data.  

Both software packages are desktop computer-based and require some scientific 

knowledge in the field of ocean color remote sensing as well as sufficient computer hardware to 

handle the satellite images and processing capabilities. In addition, computer code language 

expertise, typically in JAVA or Python, is beneficial to batch process large numbers of satellite 

files.  These software packages produce derived water quality products such as cyanoHAB 

abundance.  However, the software to date is not developed for repeated, intuitive, and rapid 

assessment of inland waters for cyanoHAB monitoring by a diverse variety of water quality 

managers and stakeholders.  Therefore, alternative software solutions are necessary to reduce the 

data access limitations and to reduce required management programmatic support (Schaeffer et 

al., 2013) for satellite-derived data on cyanoHABs. 

1.4 Mobile device application solution 

Unlike previous software packages, a mobile device application (app) would reduce the 

need for scientific expertise in ocean color interpretation and hardware requirements associated 

with the use of satellite data.  An app would provide intuitive ability through a graphical user 

interface (GUI) to scan water bodies for changes in cyanoHAB abundance without expertise in 

computer programming or computer languages.  Georeferenced data would allow managers to 

monitor their particular water bodies of interest without having to filter through numerous 

satellite images of water bodies not associated with their region. Managers could set query 

thresholds to identify if cyanoHAB abundance exceeds a certain limit. In addition, by using 

advanced alert systems, an app would allow passive reception of data instead of active 

acquisition minimizing the amount of time commitment on behalf of the manager.  Managers 

would benefit from multiple methods of notification through a mobile phone app that could, for 

example, change the colors of map pins based on previously set threshold levels.   

In addition, remote sensing data traditionally are provided as files covering an entire 

region with data for a particular moment in time.  An app would allow managers to select a 

single location of interest to quickly visualize the quantified cyanoHAB abundance value, and a 

scaling capability would provide larger ecosystem context.  The ability to quickly query a single 

pixel location and obtain a time-series of information has not been readily available for non-



https://oceandata.sci.gsfc.nasa.gov/




http://www.mywaterquality.ca.gov/habs/where/freshwater_events.html
http://www.oregon.gov/oha/ph/HealthyEnvironments/Recreation/HarmfulAlgaeBlooms/Pages/Blue-GreenAlgaeAdvisories.aspx
http://www.oregon.gov/oha/ph/HealthyEnvironments/Recreation/HarmfulAlgaeBlooms/Pages/Blue-GreenAlgaeAdvisories.aspx
http://www.dec.ny.gov/chemical/83332.html
http://www.deq.idaho.gov/water-quality/surface-water/recreation-health-advisories/
http://www.nj.gov/dep/wms/bfbm/cyanoHABevents.html
https://deq.utah.gov/Divisions/dwq/health-advisory/harmful-algal-blooms/
https://apps.health.vermont.gov/vttracking/cyanobacteria/2017/
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Fig. 1. Schematic of hardware configuration of three servers hosting CyAN mobile app.  Proxy, 
data management, and administrative servers are behind a firewall to the publically accessible 
internet. 
 

The application logic (Fig. 2) illustrates the communication between the user, Android 

application, data management server, and administrative website for some common tasks 

performed. The CyAN administrative server (admin website) is composed of an Apache HTTP 

web and Tomcat application server.  The server is a security-configured, Linux-based operating 

system running a Python-written administrative web application.  This hosting system supports a 

Django framework web application that mediates and services connections between the uploaded 

satellite data (cyanoHAB abundance extracted from geoTIF files) and a relational database 

(MySQL).  The Django framework provides the structure for implementing a Model View 

Controller designed web application (admin tool) that serves as an interface for data management 

functions, imagery upload, triggering of backend processing for data extraction, data validation, 

data standardization, and database population. 
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Fig. 3.  (a) Main splash page of CyAN app for dropping pin locations and navigating to the 

My Location, Compare, Notification, and Geographic Coordinates tabs. (b) Side swipe the tab, 
or select the cogwheel at the top right, to alter the pin color thresholds based on user criteria. 

 

4.2 Case 2 - Locations 

Locations are stored in a list for quick and easy comparison to visualize the current 

cyanoHAB abundance value and the change from the previously reported time step (Fig 4a).  

The user can visualize latitude and longitude coordinates of locations, location names, 

cyanoHAB values, and recent changes.   Selecting a listed location allows the user to view the 

marker pin on the map, the satellite data origin, and imagery thumbnails.  The end-user first 
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encounters the satellite images after selecting My Location and clicking on the desired location 

within the list (Fig 4b).  

 
Fig. 4.  (a) My Location tab of CyAN app, with storage of all set locations from the user.  (b) 

Selection of a location in the My Location tab allows the user to visualize the thumbnail archive 
of Sentinel-3 satellite imagery.  

 

The end-user may select any satellite file that contains their locations of interest to view the 

entire satellite tile (Fig. 5a).  The CyAN app allows the satellite tile to be downloaded to the 

mobile device as a PNG file for record-keeping, or for quick viewing in the app for spatial 

information.  The Imagery subtab allows a user to filter the image list by satellite instrument, 

filt er the image list by date, and select image(s) for overlay.  Users can overlay images on the 

base map, adjust the opacity of overlays, and pan or zoom within image(s).  The Chart subtab 

permits users to view a time-series plot of selected locations with supported time frames. 

4.3 Case 3 - Comparison 
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The Comparison tab of the CyAN app allows end-users to temporally view changes in 

cyanoHAB abundance across multiple locations of interest for an annual rolling time period (Fig. 

5b).  This analysis requires selecting two or more locations for comparison as described under 

Case #1.  The user is provided with a list of selected locations, names, latitude and longitude 

coordinates, current cyanoHAB abundance, and recent changes.  The Compare Statistics tab 

includes the areal maximum value of the pixel location and pixel count (3 × 3-pixel maximum 

cyanobacterial abundance) and abundance delta value.  The Blooming Chart subtab provides a 

time-series plot of cyanobacterial abundance for selected locations. 

 
Fig. 5.  (a) Selecting a satellite thumbnail image allows the user to visualize the complete 
satellite tile for the location of interest for spatial patterns. (b) Example of selecting the Compare 
tab allows the user to visualize temporal comparisons amongst different locations. Each line 
graph represents a single pixel that contains the geographic coordinate. 
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5.0 Results and Discussion 
App requirements were initially defined from interviews of water quality managers to 

understand basic end-user limitations and needs (Schaeffer et al., 2013). Starting with these user 

requirements, the Agile method was implemented during architectural conceptualization and 

design.  Ideation was used for wireframes, prototype testing, and final software development. 

Software was developed through a series of crowd-sourced competitions.  Coders were provided 

a list of software technologies to use, assembly component diagrams, and class and sequence 

diagrams and requirements. An ongoing agile process is used to modify the app based on user 

feedback.  Jira and Confluence project management software along with a branched GitHub 

software repository, daily scrums, biweekly sprint reviews, and frequent releases based on user 

feedback were used to guide further development and enhancement.  Resource utilization is 

monitored to gather usage statistics and gauge application performance.  Average operational 

statistics for REST API call metrics were GET_IMAGE at 250.45 milliseconds (ms), 

GET_LOCATION_DATA at 208.49 ms, GET_LOCATION_IMAGES at 3,597.29 ms for up to 

12 images, GET_NOTIFICATIONS at 1,698.67 ms, and POST_APP_DATA at 1,361.85 ms. 

App data are quality checked separately using GIS software.  The mobile application 

meets National Institute of Standards and Technology (NIST) production environment standards 

800-53 Revision 4 security controls and assessment procedures for Federal Information Systems 

and Organizations (https://nvd.nist.gov/800-53/Rev4/control/SI-2), and Information Directive 

Policy CIO 2150.4 to provide security for information and information systems 

(https://www.epa.gov/sites/production/files/2017-06/documents/information-security-policy.pdf) 

within the EPA National Computer Center including quarterly system and component patching. 

The app has been beta tested since June 2017 and currently has users in 12 EPA offices, US 

Army Corps of Engineers, and approximately 16 state environmental and health departments. 

The app was also used to deliver satellite data on Lake Okeechobee from June through October 

2017 where multiple stakeholders desired access to the same satellite data.  A sample of beta 

tester generalized app comments are provided in Table S2. 

https://www.epa.gov/sites/production/files/2017-06/documents/information-security-policy.pdf
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Satellite data files were converted from netCDF to GeoTIFF to compress file sizes and 

tiled into equal area sections containing 2,000 columns and rows of 300 × 300 m pixels covering 

a 600 × 600 km distance. These tiles are based off existing Landsat scene tiles so they may be 

nested (Fig. 6). Backend average processing time is 1.3 minutes per tile, for 37 tiles across the 

U.S., totaling 47.54 minutes, which included image validation, data extraction, database 

population and ancillary imagery generation. Average tile file sizes ranged from 82 KB to 422 

KB depending on the number of US lakes and water pixels within each tile (Fig. 7). Tiles used 

2,500MB with 11 months of OLCI weekly data for 37 tiles, and the image directory used 8.0 GB 

or 7% of filesystem.  The interval time between a satellite acquisition and the app user accessing 

the data is typically three days.  For example, NASA processed daily images Sunday through 

Saturday, for each satellite acquisition day, between January 1, 2017 through January 7, 2017.  A 

7-day weekly composite was created and posted by Tuesday the following week, in the example 

case by January 10, 2017. The data were uploaded to the app the following day and delivered to 

the app.  

 

Fig. 6. Map of continental U.S. (CONUS) grid tiles developed for OLCI processing and location 
of NHDPlusV2 resolvable lakes (Table S1) in each state (black points).   




















