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Figure 10.—OFPC erosion rates measured during the TDU-3 LDWT. 

 
Figure 11.—Comparison of OFPC erosion rates measured near the 12 o’clock 

(12 oc) and 9 o’clock (9 oc) masks. 

Similar to the approach taken with the IFPC, in order to assess the azimuthal symmetry of the OFPC 
wear mechanisms, profilometry measurements acquired near both the 12 and 9 o’clock masked regions 
were compared for the 300 V/1.25 B operating condition. The results are shown as a function of 
normalized OFPC radius in Figure 11. Contrary to the IFPC results, the azimuthal variation in wear rates 
was greater than the measurement uncertainty, suggesting that the OFPC wear was asymmetric for this 
operating condition. However, it is important to note that the pre-test surface finish in both of these 
regions was different. Specifically, the 12 o’clock mask was placed over a region of polished graphite 
whereas the region near the 9 o’clock mask was unpolished.  
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As shown in Figure 8, the keeper during the LDWT eroded at a radially-averaged rate of 
approximately 13 �Rm/kh independent of operating condition, which represents a decrease of 84 percent 
relative to the results acquired during the portion of the SDWT operated at the 600 V/ 1 B condition 
(Ref. 5). Furthermore, unlike during the SDWT, no significant radial variation in erosion rate was 
observed (Ref. 5). Qualitative confirmation of these results is shown by features visible in the 3D 
renderings of the cathode keeper acquired post-test and shown in Figure 9. Consistent with the results 
shown in Figure 8, the elevated plateaus corresponding to the masked regions of the keeper are much less 
pronounced for the LDWT than for the SDWT. This is particularly striking as each of the unmasked 
regions of the SDWT keeper accumulated approximately one-fifth the hours of those on the LDWT 
keeper (Ref. 5). It is important to note that the surface doming observed in Figure 9(b) was also present in 
pre-test scans and thus is likely an artifact of the pre-test polishing and not plasma exposure. Taken 
together, these results confirm the strong link between cathode position and keeper erosion rates and 
indicate that the upstream shift in cathode position successfully mitigated the elevated erosion rates 
observed during the SDWT.  

It is important to note that the observed keeper step sizes were too small to be processed using the 
ISO method discussed previously. Instead, as done in both previous wear tests, the keeper data were 
analyzed manually using commercial software provided by the profilometer manufacturer. As discussed 
in Williams, et al. (Ref. 5), the SDWT keeper erosion data at the 600 V/1 B condition was acquired 
during the comprehensive performance characterization of TDU-3. As such, during the SDWT, TDU-3 
was operated over a range of throttle conditions and magnetic field settings, resulting in increased 
uncertainty in the erosion measurements (Ref. 5). However, previous work has indicated that this 
increased uncertainty is smaller in magnitude than the wear rate reduction observed between the SDWT 
and LDWT (Ref. 5). As such, the increased uncertainty associated with nonwear point operation during 
the SDWT does not impact the overall conclusion that the upstream shift of the cathode significantly 
reduced keeper erosion rates.  

As discussed by Lopez Ortega, et al. (Ref. 33), the decrease in keeper erosion for the upstream 
cathode location is likely due to an increase in shielding provided by the IFPC against ions originating 
close to the discharge channel. Specifically, the upstream shift reduces the effective downstream view 
factor of the keeper. Since it is postulated that thruster ions (i.e., those born in the thruster channel, 
acceleration region, or near-field plume) are the primary cause of IFPC and keeper erosion, this reduction 
in view factor should reduce the number of thruster ions incident on the keeper, resulting in the observed 
reduction in keeper erosion rates (Refs. 30 and 33).  

OFPC Wear 

Figure 10 shows the OFPC erosion rates measured during the LDWT as a function of normalized 
OFPC radius. In Figure 10, a normalized radius of 0 corresponds to the edge of the OFPC closest to the 
discharge channel whereas a radius of 1 corresponds to the outer edge of the thruster. It is important to 
note that the truncation of the data near the inner edge is due to the fact that the employed masks do not 
cover the entire width of the OFPC. Near the outer edge, the mask fastener prevented the formation of a 
sufficiently large unexposed reference surface, thus precluding data analysis in this region. 

As shown in Figure 10, the OFPC erosion rates largely follow the same trends as those for the IFPC. 
Specifically, OFPC erosion is observed to increase beyond the measurement uncertainty as the discharge 
voltage is decreased from 600 to 300 V and as the magnetic field strength is increased at a fixed discharge 
voltage of 300 V. Specifically, the erosion rate at 300 V/0.75 B is approximately 4 times higher, on 
average, at a given radius than for 600 V. Furthermore, the erosion rate is approximately 1.4 times higher, 
on average, at a given radius for operation at 300 V/1.25 B compared to 300 V/0.75 B. In addition, for all 
operating conditions, the OFPC erosion is shown to maximize near the discharge channel and then 
decrease with increasing radius. The observed variations in OFPC erosion with radial position and 
discharge voltage match results from previous empirical and analytic work, while the observed variation 
with magnetic field had not previously been investigated (Refs. 5 and 30). 
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Figure 10.—OFPC erosion rates measured during the TDU-3 LDWT. 

 
Figure 11.—Comparison of OFPC erosion rates measured near the 12 o’clock 

(12 oc) and 9 o’clock (9 oc) masks. 

Similar to the approach taken with the IFPC, in order to assess the azimuthal symmetry of the OFPC 
wear mechanisms, profilometry measurements acquired near both the 12 and 9 o’clock masked regions 
were compared for the 300 V/1.25 B operating condition. The results are shown as a function of 
normalized OFPC radius in Figure 11. Contrary to the IFPC results, the azimuthal variation in wear rates 
was greater than the measurement uncertainty, suggesting that the OFPC wear was asymmetric for this 
operating condition. However, it is important to note that the pre-test surface finish in both of these 
regions was different. Specifically, the 12 o’clock mask was placed over a region of polished graphite 
whereas the region near the 9 o’clock mask was unpolished.  
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(a) (b) 

Figure 12.—TDU-3 IFPC (a) before and (b) after completion of a segment of the LDWT. 

Taken together with the observed decrease in IFPC erosion rates over time, this result suggests a 
possible link between surface finish and erosion rates. Specifically, although polished pre-test, the IFPC 
has been observed to roughen after plasma exposure. Evidence of this can be seen in Figure 12(b), which 
is a post-test image of the pole cover shown in Figure 12(a) that shows evidence of significant roughening 
relative to the polished finish achieved pre-test. Once roughened, the results in Figure 4, suggest that the 
erosion rates of the IFPC decrease. If true, that would also explain the results in Figure 11, where the 
unpolished portion of the OFPC is shown to erode slower than the polished portion. This possibility will 
be further investigated during the remainder of the LDWT. 

Conclusion 
This work presented a summary and overview of the results acquired during the first four segments 

(1715 h) of the TDU-3 LDWT. Periodic performance characterizations performed at a set of six fixed 
reference firing conditions indicated that TDU-3 performance and stability varied by less than the 
measurement uncertainty throughout the test as well as when compared to results acquired during 
previous TDU performance and wear characterizations.  

Erosion of the inner and outer front pole covers was shown to be a strong function of discharge 
voltage and magnetic field strength. Specifically, erosion rates at 300 V were shown to be up to four times 
higher than those at 600 V due to the higher beam divergence at the lower discharge voltage. These rates 
were also shown to increase with increasing magnetic field strength for operation at 300 V. Consistent 
with results from previous TDU wear tests, a decrease in IFPC erosion rate was shown with operating 
time. Observations of lower erosion rates for unpolished sections of the OFPC suggest that this might be 
caused by the roughening of the pole covers during operation, rather than a change in the near-field 
plasma properties. Finally, shifting the axial position of the cathode from coplanar to upstream of the 
IFPC resulted in an 84 percent reduction in measured erosion rates, thus validating this design approach 
for mitigating the elevated keeper wear observed during the SDWT. 
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