

 1

Optimization of Elastodynamic Finite Integration Technique on Intel Xeon Phi Knights
Landing Processors

William C. Schneck, III

william.c.schneck@nasa.gov

NASA Langley Research Center

Hampton, VA 23681

Elizabeth D. Gregory

elizabeth.d.gregory@nasa.gov

NASA Langley Research Center

Hampton, VA 23681

Cara A. C. Leckey

cara.ac.leckey@nasa.gov

NASA Langley Research Center

Hampton, VA 23681

Abstract:

This work describes the development and optimization of an implementation of an isotropic

elastodynamic finite integration technique (EFIT) code for parallelized computation on Intel Knights

Landing (KNL) hardware. EFIT is a numerical approach resulting in standard staggered-grid finite difference

equations for the elastodynamic equations of motion to simulate bulk waves is solids. The

computationally efficient simulation of elastodynamic wave propagation and interactions in aerospace

materials is of high-interest in the fields of nondestructive evaluation (NDE) and structural health

monitoring (SHM). Ultrasonic inspection uses an ultrasonic signal, generated at the surface of the

material/structure via use of a piezoelectric transducer, to propagate sound waves into the material

where it interacts with any existing defects, as well as with structural boundaries and any material

inhomogeneity. Reflections from defects and boundaries are then measured by a transducer. Realistic

ultrasound simulation tools can significantly aid the development and optimization of inspection

techniques and can assist in the interpretation of experimental data.

The optimization of an elastodynamics simulation code for the KNL Many Integrated Core processor was

performed. The optimization focused on data locality and vectorization. Results show that tiling of the

data to exploit the cache behavior and allow for significant utilization of the KNL hardware. The MPI

implementation allows for a scalable implementation enabling large problems to be simulated. The model

results were validated against theoretical dispersion curves to within 2% of the group velocity, and within

0.5% of the phase velocity of the A0 mode. Aggressive use of tiling, threading, and vectorization

techniques allowed for dramatically improved time to solution.

https://ntrs.nasa.gov/search.jsp?R=20190026687 2019-12-26T13:04:13+00:00Z

 20

Figure 11: A demonstration of results with a half-thru surface crack. These data were computed with a
¢�š
L

Ü�ä
ß
Ý
H
Ú
Ù�?
ás and
¢�ž
L
Ü�ä
á
à
H
Ú
Ù�?
Ým. The model evaluated an aluminum plate 793mm×793mm×6.20mm
excited by a
Þ cycle 200kHz Hann windowed transducer. The model was run for ���������V. The figure shows time
steps �D�W���������V�������������V�����D�Q�G�����������V. The reflector is shown in green, and reflected waves are shown in the inset
boxes. The lower right depicts a close view of the A0 reflection.

7.0 Conclusions

The optimization of an elastodynamics simulation code for the Knights Landing Many Integrated Core

processor was performed, focused on data locality and vectorization. Tiling the data to exploit the cache

behavior allowed for significant utilization of the KNL hardware which was demonstrated by carefully

profiling code performance �µ�•�]�v�P�� �/�v�š���o�[�•�� �s�d�µ�v���� ���v���� �����À�]�•�}�Œ�� �š�}�}�o�•�X�� �d�Z���•���� �š�}�}�o�•�� �P���À���� �o�}�Á-level data to

analyze the KNL resource utilization, allowing targeted optimizations on the highest return options. The

MPI implementation allows for a scalable implementation enabling large problems to be simulated.

The model results were validated against theoretical dispersion curves to within 2% of the group velocity,

and within 0.5% of the phase velocity of the A0 mode. The validated model performed a simulation of a

realistic aluminum plate with a crack which ran on a single device in less than 10 minutes, allowing the

 23

[22] J. P. Bingham and M. K. Hinders, "Lamb Wave Characterization of Corrosion-thinning in Aircraft

Stringers: Experiment and Three-dimensional Simulation," The Journal of the Acoustical Society of
America, no. 126, pp. 103-113, 2009.

[23] C. A. Leckey, K. R. Wheeler, V. N. Hafiychuk, H. Hafiychuk and D. A. Timuçin, "Simulation of Guided-

wave Ultrasound Propagation in Composite Laminates: Benchmark Comparisons of Numerical

Codes and Experiment," Ultrasonics, no. 84, pp. 187-200, 2018.

[24] U. Iturrará-Viveros and M. Molero-Armenta, "GPU computing with OpenCL to model 2D elastic

wave propagation: exploring memory usage," Computational Science & Discovery, vol. 8, 2015.

[25] P. Huthwaite, "Accelerated Finite Element Elastodynamic Simulations Using the GPU," Journal of
Computational Physics, vol. 257, pp. 687-707, 2014.

[26] M. Castro, E. Francequini, F. Dupros, H. Aochi, P. O. Navaux and J. Méhaut, "Seismic Wave

Propagation Simulations on Low-power and Performance-centric Manycores," Parallel Computing,
vol. 54, pp. 108-120, 2016.

[27] Intel, Intel(R) 64 and IA-32 Architectures Optimization Reference Manual, Intel, 2016.

[28] Intel, "Intel(R) VTune(tm) Amplifier 2018 Help," [Online]. Available: https://software.intel.com/en-

us/vtune-amplifier-help-l2-miss-bound. [Accessed 5 February 2018].

[29] B. N. Pavlakovic and M. J. Lowe, "Disperse: A General Purpose Program for Creating Dispersion

Curves," Rev. Progress of Quantitative Nondestructive Evaluation, vol. 16, no. A, pp. 155-192, 1997.

 12

In this section a data layout optimization study will be presented, along with three code performance

assessment methods. The data layout in memory will optimize the tiling of the data based on the time-

to-solution for several simulation cases using different tile widths. The performance of the code running

under the optimized data layout is assessed using roofline, weak scaling, and strong scaling analyses.

Roofline analysis is a standard code analysis approach that is a means to determine how effectively a given

code or kernel uses the available compute resources. In particular, it considers in a reasonably holistic

sense, the hardware system and the algorithm in use, to give information regarding remaining gains that

can be achieved in code speedup. The roofline analysis provides clues on ideal targets for further code

optimization (for example, if the execution is found to be communication bound, one would not target

improvement of execution hardware utilization). Weak and strong scaling describe the parallel

performance of the algorithm. Weak scaling determines for a specified time to solution (i.e., execution

time)�U���Z�}�`���Z���]�P�[���}�(�����������}���o���u�������v�����������}�o�À������when more processors are added to perform the calculation.

Weak scaling is important for problems where the desired computational domain is large, and small scale

tests execute sufficiently quickly. In such a scenario, good weak scaling indicates that more hardware

allows the solution of the larger computational domain in approximately the same execution time. Strong

scaling demonstrates, for a given computational domain size, whether more processors working the

calculation will yield faster time to solution. Strong scaling is important when the simulation domain is

fixed, but improvements in actual time to solution are desired.

4.1 EFIT Data Layout Optimization

As discussed in Section 3.3, data layout in memory is critical to code performance. The objective of this

data layout optimization study for EFIT is to optimize the layout of the simulation domain in memory in

order to achieve the greatest possible cache reuse. This goal is achieved by creating stacks of 2D tiles (�U�V
tiles stacked in the �T direction). When the size is optimized, calculating all values in a tile before moving

to the next tile provides greater cache reuse, and thus reduced pressure on the processor tile

interconnect.

Data layout experiments were run in order to experimentally determine the optimal data layout in

memory to permit best cache reuse. The results are shown in Figure 7. Simulation sizes of 4 million

(512×512×16), 17M (1024×1024×16), 67M (2048×2048×16), and 270M (4096×4096×16) grid cells were

studied. These sizes were selected to provide a broad suite of problem sizes to assess data layout

sensitivities to changes in problem size. There was observed minimal sensitivity to problem size, except

for problems that in large part do not fit in MCDRAM.

The data layout optimization study was conducted by changing the tiled stack width, as shown in Figure

6, �(���}�u�����������P�����`�]�����Z���}�(���µ�v�]���˙�����}�����Z�����Z���]�����������������µ���v���]�v�P�[�����������v�P���u���v���U�����˙�����}�`���������}�(�����`�}�X��Figure 7 shows

the results of memory layout experiments. As shown in the figure, for problem sizes of 4M to 67M grid

cells, which fit within the high-bandwidth MCDRAM, optimal data arrangements occur for data pages

���]�Ì���������o�}���������}�����Z�������]�Ì�����}�(�����Z�����������Z���������P���X���&�}���������}���o���u�����o�����P�������v�}�µ�P�Z�����}���������`�}���l�������(���}�u�����Z�����Z�(�����[��DRAM

memory, the optimization is less sensitive to the tile size. However, for large problem sizes, improvement

is still observed at, or slightly larger than, data pages sized to the cache page size (i.e., problems worked

from DRAM are still aided by the tiling optimization though not as significantly as for problems worked

from MCDRAM or L2). These layouts were studied for single-device as well ask up to four InfiniBand

connected KNL devices communicating through MPI.

 13

Figure 7: Data layout experiments. The red lines are for 1 KNL device, green lines are for 2 KNL devices,
blue lines are for 3 KNL devices, and black lines are for 4 KNL devices.

The data layout experiments demonstrate that the code is optimized for single device operation, but that

if the network communications were fully hidden and the synchronization delays reduced/eliminated, the

 14

estimated ideal performance shows minimal difference between single and multiple device compute

performance. This result shows that for a given memory layout, and overall working memory level

(MCDRAM vs DRAM), the compute time per grid cell per time step is roughly constant. There is an

�µ�v���˘�������������� �Z���µ�u���[�� �]�v�� ���Z���� �P�������Z���� ������ ���� �˙-bin size of four, that consistently occurs when working in the

MCDRAM (does not seem to occur for the problem when it requires significant use of main memory). This

bump is unexplained currently, and will be an area of further study. Based on these results, the optimized

tile width is determined to be 32 cells wide, which coincided with each tile occupying one 4kB cache page.

4.2 Roofline Analysis

Roofline analysis results show that for the problem sizes investigated here, the compute kernel is primarily

bound by the L2 cache bandwidth. The algorithm consistently achieved an arithmetic intensity (operations

per byte of data loaded from the L1 cache to core registers) of approximately 0.1. At this arithmetic

intensity, the L2 cache bandwidth limits the FLOP rate to approximately 200 GFLOPS Further

improvements in the solution would require redesign of the code to increase the arithmetic intensity, or

major data restructuring to fit a fundamental work unit/task into L1. The Roofline of the performance of

the kernel for various cases is shown in Figure 8.

 15

Figure 8: Roofline indicating kernel performance for various cases

Because the roofline analysis shows aggregate performance near (but below) the L2 bandwidth roof, this

indicates reasonable optimization, however opportunities to operate more out of the L1 cache will likely

increase speedup. Improvement of the use of the L1 cache would enable the code to approach the vector

 16

OP roof of approximately 1.3 TFLOPS, assuming no algorithmic increase in arithmetic intensity. Further

algorithmic development to increase the arithmetic intensity would allow further speedup by reducing

the rate at which the data is required to be loaded and evicted from higher levels of cache. The kernel

shows fairly consistent performance from problem size to problem size, but also shows degraded FLOPS

for very large (>67M grid cells) problem sets. The MPI performance demonstrates worse performance

from equivalent problem set sizes for single device operation. The algorithm as a whole operates within

a region bound by both memory accesses and compute roofs.

Table 1 shows the data that can be used to quantitatively assess the limitations of the compute kernel

shown on the roofline plot. The parameters shown highlight compute utilization and memory level

accesses. A consideration of instruction mix (scalar vs. vector operations) and pipeline

vacancy/instruction retirement provides an assessment on whether the backend is stalled due to

�}�����������]�}�v���� �v�}���� ���}�u���o�����]�v�P�� �(�������� ���v�}�µ�P�Z�� �}���� �]�(�� ���Z���� ���}������ �]���� �`���]���]�v�P�� �}�v�� ���������� �(���}�u�� �^�������������_�� �o���À���o���� �}�(��
cache/memory to perform the operation. This behavior can be inferred from the data presented in the

table.

Table 1: Core back-end performance and limiting factors.

 Compute Utilization Memory Accesses

Case: VPU
utilization

Backend
Bound L2 hit rate L2 hit

bound
L2 miss
bound

MCDRAM
hit rate

�v�/ 1 0.49 0.937 0.367 0.332 1

�s�y�/ 0.996 0.506 0.936 0.408 0.378 1

�x�y�/ 0.996 0.522 0.933 0.4 0.392 0.928

�t�y�r�/ 0.996 0.661 0.926 0.189 0.206 0.463

�u�/�2�+
H�x�y�/ 0.996 0.477 0.935 0.332 0.311 0.868

For most cases shown in the Table 1, the kernel has approximately 50% of its execution pipeline empty

due to issues arising in the backend. The backend of the processor loads the data for operations and

dispatches them to the execution pipeline. It can stall either due to having too many of one type of

operation, resulting in unused execution ports of other types of operations, or when data is unavailable

to dispatch the operation. The kernel has a good mix of both floating point and integer/address/bit

operations along with a very strong utilization (>99%) of the vector processing unit means that the

operations in the back-end are unlikely to be the source of the stall, therefore it is most likely a data-

supply issue.

For most cases, the kernel profile shows approximately 40% of clock ticks exhibit some pipeline stall per

processor due to L2 cache hit handling. Since approximately 93% of L1 misses hit in the L2 for all cases,

this would indicate that the problem execution is primarily bound by L2 cache access, which points to the

kernel operating as a bandwidth limited code. Of the remaining 7% of L1 misses, approximately 40% clock

ticks exhibit some pipeline stall due to L2 miss handling. For most of these cases, the access is found in

the MCDRAM (configured to operate as an LLC). These accesses bring the kernel operation further away

from the L2 cache bandwidth ceiling. For large problems, however, access to the DRAM is observed. For

the 270M case, more than half of L2 misses find the data in DRAM. With its limited bandwidth, this greatly

skews the number of back-end bound pipelines to 66.1%. L2 still hits at 93%, but the total increase in L2

 17

miss count leads to a much larger increase in L2 miss handling time. Since the DRAM bandwidth is

saturated for this case, The L2 miss bound percent inadequately represents the time due to it being

calculated in a fashion that only considers latency, and not bandwidth, thus failing to account for the

differing bandwidths of the DRAM and the MCDRAM [28].

4.3 Weak Scaling Analysis

Weak scaling studies were performed to determine code performance for fixed problem size per device.

This is useful for determining if larger (in terms of cell count) overall simulations can be solved in similar

amounts of time if more compute nodes are used. The weak scaling for this algorithm performs best for

problem sizes of intermediate size, near 67M cells per KNL device. Larger problem sets exhibit slowdown

associated with excessive MCDRAM/DRAM access, and small problem sets exhibit slowdown associated

with reduced amortization of thread and MPI synchronization time. Weak scaling efficiency for the EFIT

code on KNL is shown in Figure 9. Performance is generally good for cell counts of 16M-128M per KNL

device. Outside of this band, performance starts to degrade due to poor amortization/hiding of

communication costs for small problem sizes, and further increased pressure on main memory bandwidth

due to more required communication on an already saturated bus, since MPI requires DRAM access as

well as the main compute loops.

Figure 9: Weak scaling efficiency. Small problem sets have insufficient amortization of communication
overhead and large problem sets require accesses to larger, slower memory. The weak scaling efficiency was
normalized to the timing of a single node 17M cell case.

This weak scaling analysis shows that for moderately sized (17M-67M cells/KNL) problems, the scaling

efficiency stays near unity. This indicates that implementing larger simulations can be achieved by adding

a proportionally larger number of KNL devices, allowing the larger simulation to be evaluated in

approximately the same runtime. Larger simulation sizes per KNL exhibit slowdowns associated with

excessive system memory accesses, and smaller simulations sizes exhibit slowdown associated with

reduced amortization of thread and MPI synchronization time.

 18

4.4 Strong Scaling Analysis

Strong scaling tests were also performed, allowing the determination of how the code performs for a

given case run on an increased number of KNL devices. Linear strong scaling is shown for problems where

the working data set per processor is larger than approximately 4M, but smaller than 270M, as the 270M

�����������]�������Z�}�`�v�����}���������µ�]�������µ�������}�(�����Z�����Z�(�����[�����Z���D�X���d�Z�����������}�v�P���������o�]�v�P���������(�}���u���v�������]�������Z�}�`�v���]�v��Figure 10.

Figure 10: Strong scaling performance. Superscalar performance gains are found for very large working sets,
worse scaling performance is found for very small working sets.

Strong scaling analysis shows scalar (speedup proportional to the number of added KNL processors)

performance for problem sizes larger than about 4M cells per KNL device, with initially superscalar

improvement for the 270M cell case. Strong scaling is maintained until the on-chip calculation size

becomes too small, and communications overhead is no longer efficiently amortized over the working set.

Very large problems exhibit superscalar behavior when the simulation moves from being worked out of

DRAM to being worked out of the MCDRAM (configured as an LLC) and L2 caches. This indicates a

�������(�}���u���v�������Z���`������-�����}���[of problem sizes between 4M cells and 67M. If the whole problem is streaming

out of the DRAM with a very reliable access pattern allowing complete latency hiding, then the maximum

possible FLOPS would be the a���]���Z�u�����]�����]�v�����v���]���˙���~�C�ì�X�í���&�>�K�W�l���������]�u���������Z���������v���`�]�����Z���~�C�ı�ì���’���l�����U��which is

approximately 9 GFLOPS. The DRAM is still well buffered by the hardware prefetcher keeping the problem

working mostly out of L2/MCDRAM, but with 270M grid cells, the DRAM bandwidth begins to overwhelm

the prefetcher, and is starts to retard the solution progression.

5.0 Validation

 19

Prior to running an example case, a basic code validation was performed. For verification of the

mathematics performed by the optimized EFIT code, a comparison was performed between simulation

results and theory. A simulation of a pristine aluminum plate of size 793mm×793mm×6.20mm

(2048×2048×16 cells) was run to �î�ı�ô���� (8192 time steps) in time. Guided wave dispersion curves can be

created using commercial software tools such as Disperse [29]. Dispersion curves determine the

relationship between the guided wave group and phase velocities versus frequency-thickness (frequency

of the excitation multiplied by the plate thickness). The frequency-thickness for the simulated case is 1.239

MHz×mm. At this frequency-thickness only two guided wave modes exist, a symmetric (extensional)

guided wave mode, S0, and an antisymmetric (flexural) mode, A0. The figure shows the measured value

of the A0 mode from the simulation data. It is noted that the A0 mode has a larger amplitude in the out-

of-plane direction. Since �R�í (out-of-plane) motion was output from the simulation, only the A0 mode

group velocity was measured for this comparison.

The group velocity was computed by tracking the movement of the maximum of the Hilbert envelope of

the larger-magnitude part of solution. The group velocity at a frequency thickness of 1.239 MHz×mm as

determined from the dispersion curve is �ï�í�ô�ì���u�(��, and the speed of the tracked Hilbert envelope of the

A0 mode in the simulation is �ï�í�î�ì�� �u�(��. The uncertainty bars were computed based on the standard

deviation of the residuals between the linear fit and the position of the maximum of the Hilbert envelope

at each returned time step. The group velocity has an error with respect to its dispersion curve of 1.844%.

Phase velocity comparisons for the A0 mode were also performed. Phase velocity is equal to �R�ª
L �B �G�⁄ .

The A0 and S0 wavenumbers present in the simulation data can be found by first outputting the �R�í data

on the plate surface at all points in time. Next a 3D FFT is performed and a single frequency slice is selected

(corresponding to the excitation frequency). This single slice represents the wavenumber in �T and �U
directions in the simulated plate. As the plate material is isotropic, the wavenumber value is not

directionally dependent. The phase velocity for A0 was then evaluated by pulling out the A0 wavenumber

and dividing it by the nominal frequency of the drive function. The phase velocity at a frequency thickness

of 1.239MHz×mm as evaluated from the dispersion curve is �î�ð�ò�ì�� �u�(��, and the phase velocity as

determined from the simulation is �î�ð�æ�ì���u�(��. This evaluates to an error with respect to the phase velocity

dispersion curve of 0.337%. The uncertainty bars were determined by perturbing the wavenumber by one

bin based on the resolution of the 2D FFT.

6.0 Example Case

The optimized EFIT code was tested for an example case of guided ultrasonic waves in an aluminum 2024

plate containing a crack that extends half way through the plate thickness. This case is relevant to NDE

detection of damage in aircraft structures. The simulation size was set to 2048×2048×16 cells, with a

spatial step size of �� �T
L �u�ä�z�y
H�s�r�?�8m, and time step size of �� �P
L �u�ä�x�v
H�s�r�?�<s. Thus, the total simulate

plate size is 793mm×793mm×6.20mm thickness. Guided waves were excited using a 5 cycle 200 kHz

frequency Hann windowed sine wave with normal incidence. Figure 11 shows a series of time snap-shots

for the out-of-plane (�R�í) velocity at the plate surface (i.e., a 2D slice through the 3D simulation space). At

later points in time the crack damage leads to scattered waves which, in a sensor array setup, would be

detected by a piezoelectric sensor. This crack scatter signal enables damage detection, and in a best-case

scenario can also be used for damage sizing. The simulation case shown in Figure 11 was run in 429s,

resulting in a time per cell per time step of �r�ä�y�z�r �Æ�æ
�Ö�Ø�ß�ß
H�ç�Ü�à�Ø ���æ�ç�Ø�ª

.

 21

�Z���o�}�`�[�����ì���u�}���������}�������}�����P�����������}�����Z�������}�uain edge and back to the center. With modest improvements,

large ensembles of calculations become possible to aid in characterizing inspections.

Further development will focus on allowing for more modular construction of the simulation domain,

while still maintaining or improving simulation speed. Further improvements in larger-scale memory

layouts with the possible use of space-filling curves may allow further reduction in bandwidth pressure on

the 2D mesh interconnect. Further, improvement of MPI communication hiding and reducing process

synchronization would further improve scalability. Overall, the KNL architecture was demonstrated to be

capable of rapid and accurate EFIT simulation.

References

[1] N. C. Nguyen, J. Peraire and B. Cockburn, "High-order Implicit Hybridizable Discontinuous Galerkin

Methods for Acoustics and Elastodynamics," Journal of Computational Physics, vol. 230, pp. 3695-

3718, 2011.

[2] G. V. Nivarti, M. M. Salehi and W. K. Bushe, "A Mesh Partitioning Algorithm for Preserving Spatial

Locality in Arbitrary Geometries," Journal of Computational Physics, vol. 281, pp. 352-364, 2015.

[3] D. Göddeke, D. Komatitsch, M. Geveler, D. Ribbrock, N. Rajovic and A. Ramirez, "Energy Efficiency

vs. Performance of the Numerical Solution of PDEs: An Application Study on a Low-power ARM-

based Cluster," Journal of Computational Physics, vol. 237, pp. 132-150, 2013.

[4] N. Frontiere, C. D. Raskin and J. M. Owen, "CRKSPH - A Conservative Reproducing Kernel Smoothed

Particle Hydrodynamics Scheme," Journal of Computational Physics, vol. 332, pp. 160-209, 2017.

[5] K. Germaschewski, W. Fox, S. Abbott, N. Ahmadi, K. Maynard, L. Wang, H. Ruhl and A.

Bhattacharjee, "The Plasma Simulation Code: A Modern Particle-in-Cell Code with Patch-based

Load-balancing," Journal of Computational Physics, vol. 318, pp. 305-326, 2016.

[6] J. P. Briggs, S. J. Pennycook, J. R. Fergusson, J. Jäykkä and E. P. Shellard, "Separable Projection

Integrals for Higher-order Correlators of the Cosmic Microwave Sky: Acceleration by Factors

Exceeding 100," Journal of Computational Physics, vol. 210, pp. 285-300, 2016.

[7] Intel, "Products formerly Knights Landing," Intel, [Online]. Available:

https://ark.intel.com/products/codename/48999/Knights-Landing. [Accessed 2 February 2018].

[8] A. Sodani, R. Gramunt, J. Corbal, H. Kim, K. Vinod, S. Chinthamani, S. Hutsell, R. Agarwal, Y. Liu and

Intel, "Knights Landing: Second-generation Intel Xeon Phi Product," IEEE Micro, vol. 36, no. 2, pp.

34-46, 2016.

[9] G. Chrysos and Intel, "Intel(R) Xeon Phi(TM) Coprocessor (codename Knights Corner)," in Hot
Chips, Cupertino, CA, 2012.

 22

[10] C. A. Leckey, M. D. Rogge, C. A. Miller and M. K. Hinders, "Multiple-mode Lamb Wave Scattering

Simulations Using 3D Elastodynamic Finite INtegration Technique," Ultrasonics, no. 52, pp. 193-

207, 2012.

[11] J. L. Rose, Ultrasonic Waves in Solid Media, Cambridge University Press, 1999.

[12] R. M. Levine and J. E. Michaels, "Model-based Imaging of Damage with Lamb Waves via Sparse

Reconstruction," The Journal of the Acoustical Society of America, vol. 3, no. 133, pp. 1525-1534,

2013.

[13] H. Jiaze and Y. Fuh-Gwo, "Lamb Wave-based Subwavelength Damage Imaging Using the DORT-

MUSIC Technique in Metallic Plates," Structural Health Monitoring, vol. 1, no. 15, pp. 65-80, 2016.

[14] Z. Tian, C. A. Leckey and L. Yu, "Multi-site Delamination Detection and Quantification in

Composites Through Guided Wave Based Global-local Sensing," in AIP Conference Proceedings,

2017.

[15] W. H. Ong, N. Rajic, W. K. Chiu and C. Rosalie, "Lamb Wave-based Detection of a Controlled

Disbond in a Lap Joint," Structural Health Monitoring, 2017.

[16] L. Yu and C. A. Leckey, "Lamb Wave-based Quantitative Crack Detection Using a Focusing Array

Algorithm," Journal of Intelligent Material Systems and Structures, vol. 9, no. 24, pp. 1138-1152,

2013.

[17] X. Yu, M. Ratassepp and Z. Fan, "Damage Detection in Quasi-isotropic Composite Bends Using

Ultrasonic Feature Guided Waves," Composites Science and Technology, no. 141, pp. 120-129,

2017.

[18] F. Fellinger and K. J. Langenberg, "Numerical Techniques for Elastic Wave Propagation and

Scattering," in IUTAM Symposium on Elastic Wave Propagation and Ultrasonic Evaluation, Boulder,

CO., 1990.

[19] P. Fellinger, R. Marklein, K. J. Langenberg and S. Klaholz, "Numerical Modeling of Elastic Wave

Propagation and Scattering with EFIT - Elastodynamic Finite Integration Technique," Wave Motion,
vol. 21, no. 1, pp. 47-66, 1995.

[20] R. Marklein, "The Finite Integration Technique as a General Tool to Compute Acoustic,

Electromagnetic, Elastodynamic, and Coupled Wave Fields," Rev. Radio Sci.: 1999-2002, pp. 201-

244, 2002.

[21] J. P. Bingham and M. K. Hinders, "3D Elastodynamic Finite Integration Technique Simulation of

Guided Waves in Extended Built-up Structures Containing Flaws," Journal of Computational
Acoustics, no. 18, pp. 165-192, 2010.

 23

[22] J. P. Bingham and M. K. Hinders, "Lamb Wave Characterization of Corrosion-thinning in Aircraft

Stringers: Experiment and Three-dimensional Simulation," The Journal of the Acoustical Society of
America, no. 126, pp. 103-113, 2009.

[23] C. A. Leckey, K. R. Wheeler, V. N. Hafiychuk, H. Hafiychuk and D. A. Timuçin, "Simulation of Guided-

wave Ultrasound Propagation in Composite Laminates: Benchmark Comparisons of Numerical

Codes and Experiment," Ultrasonics, no. 84, pp. 187-200, 2018.

[24] U. Iturrará-Viveros and M. Molero-Armenta, "GPU computing with OpenCL to model 2D elastic

wave propagation: exploring memory usage," Computational Science & Discovery, vol. 8, 2015.

[25] P. Huthwaite, "Accelerated Finite Element Elastodynamic Simulations Using the GPU," Journal of
Computational Physics, vol. 257, pp. 687-707, 2014.

[26] M. Castro, E. Francequini, F. Dupros, H. Aochi, P. O. Navaux and J. Méhaut, "Seismic Wave

Propagation Simulations on Low-power and Performance-centric Manycores," Parallel Computing,
vol. 54, pp. 108-120, 2016.

[27] Intel, Intel(R) 64 and IA-32 Architectures Optimization Reference Manual, Intel, 2016.

[28] Intel, "Intel(R) VTune(tm) Amplifier 2018 Help," [Online]. Available: https://software.intel.com/en-

us/vtune-amplifier-help-l2-miss-bound. [Accessed 5 February 2018].

[29] B. N. Pavlakovic and M. J. Lowe, "Disperse: A General Purpose Program for Creating Dispersion

Curves," Rev. Progress of Quantitative Nondestructive Evaluation, vol. 16, no. A, pp. 155-192, 1997.

