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Abstract: 

This work describes the development and optimization of an implementation of an isotropic 

elastodynamic finite integration technique (EFIT) code for parallelized computation on Intel Knights 

Landing (KNL) hardware. EFIT is a numerical approach resulting in standard staggered-grid finite difference 

equations for the elastodynamic equations of motion to simulate bulk waves is solids.  The 

computationally efficient simulation of elastodynamic wave propagation and interactions in aerospace 

materials is of high-interest in the fields of nondestructive evaluation (NDE) and structural health 

monitoring (SHM).  Ultrasonic inspection uses an ultrasonic signal, generated at the surface of the 

material/structure via use of a piezoelectric transducer, to propagate sound waves into the material 

where it interacts with any existing defects, as well as with structural boundaries and any material 

inhomogeneity. Reflections from defects and boundaries are then measured by a transducer.  Realistic 

ultrasound simulation tools can significantly aid the development and optimization of inspection 

techniques and can assist in the interpretation of experimental data. 

The optimization of an elastodynamics simulation code for the KNL Many Integrated Core processor was 

performed. The optimization focused on data locality and vectorization. Results show that tiling of the 

data to exploit the cache behavior and allow for significant utilization of the KNL hardware.  The MPI 

implementation allows for a scalable implementation enabling large problems to be simulated.  The model 

results were validated against theoretical dispersion curves to within 2% of the group velocity, and within 

0.5% of the phase velocity of the A0 mode.  Aggressive use of tiling, threading, and vectorization 

techniques allowed for dramatically improved time to solution.  
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Figure 11: A demonstration of results with a half-thru  surface crack. These data were computed with a 
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Ým. The model evaluated an aluminum plate 793mm×793mm×6.20mm 
excited by a 
Þ cycle 200kHz Hann windowed transducer. The model was run for ���������V. The figure shows time 
steps �D�W���������V�������������V�����D�Q�G�����������V. The reflector is shown in green, and reflected waves are shown in the inset 
boxes. The lower right depicts a close view of the A0 reflection. 

7.0 Conclusions 

The optimization of an elastodynamics simulation code for the Knights Landing Many Integrated Core 

processor was performed, focused on data locality and vectorization. Tiling the data to exploit the cache 

behavior allowed for significant utilization of the KNL hardware which was demonstrated by carefully 

profiling code performance �µ�•�]�v�P�� �/�v�š���o�[�•�� �s�d�µ�v���� ���v���� �����À�]�•�}�Œ�� �š�}�}�o�•�X�� �d�Z���•���� �š�}�}�o�•�� �P���À���� �o�}�Á-level data to 

analyze the KNL resource utilization, allowing targeted optimizations on the highest return options. The 

MPI implementation allows for a scalable implementation enabling large problems to be simulated. 

The model results were validated against theoretical dispersion curves to within 2% of the group velocity, 

and within 0.5% of the phase velocity of the A0 mode.  The validated model performed a simulation of a 

realistic aluminum plate with a crack which ran on a single device in less than 10 minutes, allowing the 
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In this section a data layout optimization study will be presented, along with three code performance 

assessment methods. The data layout in memory will optimize the tiling of the data based on the time-

to-solution for several simulation cases using different tile widths. The performance of the code running 

under the optimized data layout is assessed using roofline, weak scaling, and strong scaling analyses. 

Roofline analysis is a standard code analysis approach that is a means to determine how effectively a given 

code or kernel uses the available compute resources. In particular, it considers in a reasonably holistic 

sense, the hardware system and the algorithm in use, to give information regarding remaining gains that 

can be achieved in code speedup. The roofline analysis provides clues on ideal targets for further code 

optimization (for example, if the execution is found to be communication bound, one would not target 

improvement of execution hardware utilization). Weak and strong scaling describe the parallel 

performance of the algorithm. Weak scaling determines for a specified time to solution (i.e., execution 

time)�U���Z�}�`���Z���]�P�[���}�(�����������}���o���u�������v�����������}�o�À������when more processors are added to perform the calculation.  

Weak scaling is important for problems where the desired computational domain is large, and small scale 

tests execute sufficiently quickly. In such a scenario, good weak scaling indicates that more hardware 

allows the solution of the larger computational domain in approximately the same execution time. Strong 

scaling demonstrates, for a given computational domain size, whether more processors working the 

calculation will yield faster time to solution. Strong scaling is important when the simulation domain is 

fixed, but improvements in actual time to solution are desired.  

4.1 EFIT Data Layout Optimization 

As discussed in Section 3.3, data layout in memory is critical to code performance. The objective of this 

data layout optimization study for EFIT is to optimize the layout of the simulation domain in memory in 

order to achieve the greatest possible cache reuse. This goal is achieved by creating stacks of 2D tiles (�U�V 
tiles stacked in the �T direction). When the size is optimized, calculating all values in a tile before moving 

to the next tile provides greater cache reuse, and thus reduced pressure on the processor tile 

interconnect.  

Data layout experiments were run in order to experimentally determine the optimal data layout in 

memory to permit best cache reuse. The results are shown in Figure 7. Simulation sizes of 4 million 

(512×512×16), 17M (1024×1024×16), 67M (2048×2048×16), and 270M (4096×4096×16) grid cells were 

studied. These sizes were selected to provide a broad suite of problem sizes to assess data layout 

sensitivities to changes in problem size. There was observed minimal sensitivity to problem size, except 

for problems that in large part do not fit in MCDRAM. 

The data layout optimization study was conducted by changing the tiled stack width, as shown in Figure 

6, �(���}�u�����������P�����`�]�����Z���}�(���µ�v�]���˙�����}�����Z�����Z���]�����������������µ���v���]�v�P�[�����������v�P���u���v���U�����˙�����}�`���������}�(�����`�}�X��Figure 7 shows 

the results of memory layout experiments. As shown in the figure, for problem sizes of 4M to 67M grid 

cells, which fit within the high-bandwidth MCDRAM, optimal data arrangements occur for data pages 

���]�Ì���������o�}���������}�����Z�������]�Ì�����}�(�����Z�����������Z���������P���X���&�}���������}���o���u�����o�����P�������v�}�µ�P�Z�����}���������`�}���l�������(���}�u�����Z�����Z�(�����[��DRAM 

memory, the optimization is less sensitive to the tile size. However, for large problem sizes, improvement 

is still observed at, or slightly larger than, data pages sized to the cache page size (i.e., problems worked 

from DRAM are still aided by the tiling optimization though not as significantly as for problems worked 

from MCDRAM or L2). These layouts were studied for single-device as well ask up to four InfiniBand 

connected KNL devices communicating through MPI. 
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Figure 7: Data layout experiments. The red lines are for 1 KNL device, green lines are for 2 KNL devices, 
blue lines are for 3 KNL devices, and black lines are for 4 KNL devices. 

The data layout experiments demonstrate that the code is optimized for single device operation, but that 

if the network communications were fully hidden and the synchronization delays reduced/eliminated, the 
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estimated ideal performance shows minimal difference between single and multiple device compute 

performance. This result shows that for a given memory layout, and overall working memory level 

(MCDRAM vs DRAM), the compute time per grid cell per time step is roughly constant. There is an 

�µ�v���˘�������������� �Z���µ�u���[�� �]�v�� ���Z���� �P�������Z���� ������ ���� �˙-bin size of four, that consistently occurs when working in the 

MCDRAM (does not seem to occur for the problem when it requires significant use of main memory). This 

bump is unexplained currently, and will be an area of further study. Based on these results, the optimized 

tile width is determined to be 32 cells wide, which coincided with each tile occupying one 4kB cache page. 

4.2 Roofline Analysis 

Roofline analysis results show that for the problem sizes investigated here, the compute kernel is primarily 

bound by the L2 cache bandwidth. The algorithm consistently achieved an arithmetic intensity (operations 

per byte of data loaded from the L1 cache to core registers) of approximately 0.1. At this arithmetic 

intensity, the L2 cache bandwidth limits the FLOP rate to approximately 200 GFLOPS Further 

improvements in the solution would require redesign of the code to increase the arithmetic intensity, or 

major data restructuring to fit a fundamental work unit/task into L1. The Roofline of the performance of 

the kernel for various cases is shown in Figure 8. 
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Figure 8: Roofline indicating kernel performance for various cases 

Because the roofline analysis shows aggregate performance near (but below) the L2 bandwidth roof, this 

indicates reasonable optimization, however opportunities to operate more out of the L1 cache will likely 

increase speedup. Improvement of the use of the L1 cache would enable the code to approach the vector 



 

  16 
 

OP roof of approximately 1.3 TFLOPS, assuming no algorithmic increase in arithmetic intensity. Further 

algorithmic development to increase the arithmetic intensity would allow further speedup by reducing 

the rate at which the data is required to be loaded and evicted from higher levels of cache. The kernel 

shows fairly consistent performance from problem size to problem size, but also shows degraded FLOPS 

for very large (>67M grid cells) problem sets. The MPI performance demonstrates worse performance 

from equivalent problem set sizes for single device operation. The algorithm as a whole operates within 

a region bound by both memory accesses and compute roofs.  

Table 1 shows the data that can be used to quantitatively assess the limitations of the compute kernel 

shown on the roofline plot. The parameters shown highlight compute utilization and memory level 

accesses.  A consideration of instruction mix (scalar vs. vector operations) and pipeline 

vacancy/instruction retirement provides an assessment on whether the backend is stalled due to 

�}�����������]�}�v���� �v�}���� ���}�u���o�����]�v�P�� �(�������� ���v�}�µ�P�Z�� �}���� �]�(�� ���Z���� ���}������ �]���� �`���]���]�v�P�� �}�v�� ���������� �(���}�u�� �^�������������_�� �o���À���o���� �}�(��
cache/memory to perform the operation. This behavior can be inferred from the data presented in the 

table. 

Table 1: Core back-end performance and limiting factors.  

 Compute Utilization Memory Accesses 

Case: VPU 
utilization 

Backend 
Bound L2 hit rate L2 hit 

bound 
L2 miss 
bound 

MCDRAM 
hit rate 

�v�/  1 0.49 0.937 0.367 0.332 1 

�s�y�/  0.996 0.506 0.936 0.408 0.378 1 

�x�y�/  0.996 0.522 0.933 0.4 0.392 0.928 

�t�y�r�/  0.996 0.661 0.926 0.189 0.206 0.463 

�u�/�2�+
H�x�y�/  0.996 0.477 0.935 0.332 0.311 0.868 

 

For most cases shown in the Table 1, the kernel has approximately 50% of its execution pipeline empty 

due to issues arising in the backend. The backend of the processor loads the data for operations and 

dispatches them to the execution pipeline. It can stall either due to having too many of one type of 

operation, resulting in unused execution ports of other types of operations, or when data is unavailable 

to dispatch the operation. The kernel has a good mix of both floating point and integer/address/bit 

operations along with a very strong utilization (>99%) of the vector processing unit means that the 

operations in the back-end are unlikely to be the source of the stall, therefore it is most likely a data-

supply issue.  

For most cases, the kernel profile shows approximately 40% of clock ticks exhibit some pipeline stall per 

processor due to L2 cache hit handling. Since approximately 93% of L1 misses hit in the L2 for all cases, 

this would indicate that the problem execution is primarily bound by L2 cache access, which points to the 

kernel operating as a bandwidth limited code. Of the remaining 7% of L1 misses, approximately 40% clock 

ticks exhibit some pipeline stall due to L2 miss handling. For most of these cases, the access is found in 

the MCDRAM (configured to operate as an LLC). These accesses bring the kernel operation further away 

from the L2 cache bandwidth ceiling. For large problems, however, access to the DRAM is observed. For 

the 270M case, more than half of L2 misses find the data in DRAM. With its limited bandwidth, this greatly 

skews the number of back-end bound pipelines to 66.1%. L2 still hits at 93%, but the total increase in L2 
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miss count leads to a much larger increase in L2 miss handling time. Since the DRAM bandwidth is 

saturated for this case, The L2 miss bound percent inadequately represents the time due to it being 

calculated in a fashion that only considers latency, and not bandwidth, thus failing to account for the 

differing bandwidths of the DRAM and the MCDRAM [28]. 

4.3 Weak Scaling Analysis 

Weak scaling studies were performed to determine code performance for fixed problem size per device. 

This is useful for determining if larger (in terms of cell count) overall simulations can be solved in similar 

amounts of time if more compute nodes are used. The weak scaling for this algorithm performs best for 

problem sizes of intermediate size, near 67M cells per KNL device. Larger problem sets exhibit slowdown 

associated with excessive MCDRAM/DRAM access, and small problem sets exhibit slowdown associated 

with reduced amortization of thread and MPI synchronization time. Weak scaling efficiency for the EFIT 

code on KNL is shown in Figure 9. Performance is generally good for cell counts of 16M-128M per KNL 

device. Outside of this band, performance starts to degrade due to poor amortization/hiding of 

communication costs for small problem sizes, and further increased pressure on main memory bandwidth 

due to more required communication on an already saturated bus, since MPI requires DRAM access as 

well as the main compute loops. 

 

Figure 9: Weak scaling efficiency. Small problem sets have insufficient amortization of communication 
overhead and large problem sets require accesses to larger, slower memory. The weak scaling efficiency was 
normalized to the timing of a single node 17M cell case. 

This weak scaling analysis shows that for moderately sized (17M-67M cells/KNL) problems, the scaling 

efficiency stays near unity. This indicates that implementing larger simulations can be achieved by adding 

a proportionally larger number of KNL devices, allowing the larger simulation to be evaluated in 

approximately the same runtime. Larger simulation sizes per KNL exhibit slowdowns associated with 

excessive system memory accesses, and smaller simulations sizes exhibit slowdown associated with 

reduced amortization of thread and MPI synchronization time. 
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4.4 Strong Scaling Analysis 

Strong scaling tests were also performed, allowing the determination of how the code performs for a 

given case run on an increased number of KNL devices. Linear strong scaling is shown for problems where 

the working data set per processor is larger than approximately 4M, but smaller than 270M, as the 270M 

�����������]�������Z�}�`�v�����}���������µ�]�������µ�������}�(�����Z�����Z�(�����[�����Z���D�X���d�Z�����������}�v�P���������o�]�v�P���������(�}���u���v�������]�������Z�}�`�v���]�v��Figure 10. 

 

Figure 10: Strong scaling performance. Superscalar performance gains are found for very large working sets, 
worse scaling performance is found for very small working sets.  

Strong scaling analysis shows scalar (speedup proportional to the number of added KNL processors) 

performance for problem sizes larger than about 4M cells per KNL device, with initially superscalar 

improvement for the 270M cell case. Strong scaling is maintained until the on-chip calculation size 

becomes too small, and communications overhead is no longer efficiently amortized over the working set. 

Very large problems exhibit superscalar behavior when the simulation moves from being worked out of 

DRAM to being worked out of the MCDRAM (configured as an LLC) and L2 caches. This indicates a 

�������(�}���u���v�������Z���`������-�����}���[ of problem sizes between 4M cells and 67M. If the whole problem is streaming 

out of the DRAM with a very reliable access pattern allowing complete latency hiding, then the maximum 

possible FLOPS would be the a���]���Z�u�����]�����]�v�����v���]���˙���~�C�ì�X�í���&�>�K�W�l���������]�u���������Z���������v���`�]�����Z���~�C�ı�ì���’���l�����U��which is 

approximately 9 GFLOPS. The DRAM is still well buffered by the hardware prefetcher keeping the problem 

working mostly out of L2/MCDRAM, but with 270M grid cells, the DRAM bandwidth begins to overwhelm 

the prefetcher, and is starts to retard the solution progression. 

5.0 Validation 
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Prior to running an example case, a basic code validation was performed. For verification of the 

mathematics performed by the optimized EFIT code, a comparison was performed between simulation 

results and theory. A simulation of a pristine aluminum plate of size 793mm×793mm×6.20mm 

(2048×2048×16 cells) was run to �î�ı�ô���� (8192 time steps) in time. Guided wave dispersion curves can be 

created using commercial software tools such as Disperse [29]. Dispersion curves determine the 

relationship between the guided wave group and phase velocities versus frequency-thickness (frequency 

of the excitation multiplied by the plate thickness). The frequency-thickness for the simulated case is 1.239 

MHz×mm.  At this frequency-thickness only two guided wave modes exist, a symmetric (extensional) 

guided wave mode, S0, and an antisymmetric (flexural) mode, A0. The figure shows the measured value 

of the A0 mode from the simulation data. It is noted that the A0 mode has a larger amplitude in the out-

of-plane direction. Since �R�í  (out-of-plane) motion was output from the simulation, only the A0 mode 

group velocity was measured for this comparison. 

The group velocity was computed by tracking the movement of the maximum of the Hilbert envelope of 

the larger-magnitude part of solution. The group velocity at a frequency thickness of 1.239 MHz×mm as 

determined from the dispersion curve is �ï�í�ô�ì���u�(��, and the speed of the tracked Hilbert envelope of the 

A0 mode in the simulation is �ï�í�î�ì�� �u�(��. The uncertainty bars were computed based on the standard 

deviation of the residuals between the linear fit and the position of the maximum of the Hilbert envelope 

at each returned time step. The group velocity has an error with respect to its dispersion curve of 1.844%.  

Phase velocity comparisons for the A0 mode were also performed. Phase velocity is equal to �R�ª 
L �B �G�⁄ . 

The A0 and S0 wavenumbers present in the simulation data can be found by first outputting the �R�í  data 

on the plate surface at all points in time. Next a 3D FFT is performed and a single frequency slice is selected 

(corresponding to the excitation frequency). This single slice represents the wavenumber in �T and �U 
directions in the simulated plate. As the plate material is isotropic, the wavenumber value is not 

directionally dependent. The phase velocity for A0 was then evaluated by pulling out the A0 wavenumber 

and dividing it by the nominal frequency of the drive function. The phase velocity at a frequency thickness 

of 1.239MHz×mm as evaluated from the dispersion curve is �î�ð�ò�ì�� �u�(��, and the phase velocity as 

determined from the simulation is �î�ð�æ�ì���u�(��. This evaluates to an error with respect to the phase velocity 

dispersion curve of 0.337%. The uncertainty bars were determined by perturbing the wavenumber by one 

bin based on the resolution of the 2D FFT. 

6.0 Example Case 

The optimized EFIT code was tested for an example case of guided ultrasonic waves in an aluminum 2024 

plate containing a crack that extends half way through the plate thickness. This case is relevant to NDE 

detection of damage in aircraft structures. The simulation size was set to 2048×2048×16 cells, with a 

spatial step size of �� �T
L �u�ä�z�y
H�s�r�?�8m, and time step size of �� �P
L �u�ä�x�v
H�s�r�?�<s.  Thus, the total simulate 

plate size is 793mm×793mm×6.20mm thickness. Guided waves were excited using a 5 cycle 200 kHz 

frequency Hann windowed sine wave with normal incidence. Figure 11 shows a series of time snap-shots 

for the out-of-plane (�R�í) velocity at the plate surface (i.e., a 2D slice through the 3D simulation space). At 

later points in time the crack damage leads to scattered waves which, in a sensor array setup, would be 

detected by a piezoelectric sensor. This crack scatter signal enables damage detection, and in a best-case 

scenario can also be used for damage sizing. The simulation case shown in Figure 11 was run in 429s, 

resulting in a time per cell per time step of �r�ä�y�z�r �Æ�æ
�Ö�Ø�ß�ß
H�ç�Ü�à�Ø ���æ�ç�Ø�ª

. 
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�Z���o�}�`�[�����ì���u�}���������}�������}�����P�����������}�����Z�������}�uain edge and back to the center. With modest improvements, 

large ensembles of calculations become possible to aid in characterizing inspections. 

Further development will focus on allowing for more modular construction of the simulation domain, 

while still maintaining or improving simulation speed. Further improvements in larger-scale memory 

layouts with the possible use of space-filling curves may allow further reduction in bandwidth pressure on 

the 2D mesh interconnect. Further, improvement of MPI communication hiding and reducing process 

synchronization would further improve scalability. Overall, the KNL architecture was demonstrated to be 

capable of rapid and accurate EFIT simulation.  
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