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Numerical Simulation of Dynamic Stall 
Using Near-Body Adaptive Mesh Refinement 

Neal M. Chaderjian* 
*NASA Ames Research Center, Moffett Field, CA, 94035, USA 

Abstract:  Time-dependent Reynolds-averaged Navier-Stokes simulations have been 
carried out for a NACA 0012 airfoil and a flexible UH-60A rotor undergoing dynamic 
stall.  The OVERFLOW computational fluid dynamics (CFD) code is used to explore 
the use of near-body adaptive mesh refinement (NB-AMR) for the first time on a 
flexible helicopter rotor in forward flight.  Emphasis is placed on understanding the 
temporal and spatial convergence of the solutions, their numerical efficiency and 
stability, and establishing a grid-converged solution.  Some of the remaining 
differences between CFD and flight-test measurements are discussed.  Time-dependent 
flow visualization is used to provide an improved understanding of the physical 
mechanisms involved with two-dimensional and three-dimensional dynamic stall, and 
the NB-AMR process.   

1. Introduction 
Helicopters perform many useful civil and military functions by virtue of their ability to take off and 

land vertically without a runway or hover in place.  Some examples include military or remote location 
deployment, medical or emergency evacuation, combating forest fires, police surveillance, and heavy-lift 
construction.  However, helicopter aerodynamics is often more complex than a fixed-wing aircraft 
because the main rotor is very flexible and must perform several functions, e.g., generate the necessary 
forces and moments needed to keep the vehicle aloft, provide a propulsive force for forward flight and 
balance all moments needed for trimmed level flight.  Rotorcraft flow simulation is therefore inherently 
time-dependent and multi-disciplinary, combining computational fluid dynamics (CFD), computational 
structural dynamics (CSD), and a trim algorithm to establish the blade-root motions for level flight.   

A condition known as blade vortex interaction (BVI) may also occur when the tip vortex of one blade 
interacts with the other rotor blades, producing unsteady airloads, noise and vibrations.  Moreover, 
dynamic stall is a dangerous condition that occurs when a rotor reaches its thrust limit due to blade stall.  
This condition often produces large blade torsion and control system loads and limits the flight speed of 
the helicopter [1].  The time-dependent Reynolds-averaged Navier-Stokes (RANS) equations are solved 
using the OVERFLOW [2-3] CFD code for an isolated, flexible UH-60A rotor in forward flight, see Figs. 
1-2.  The flight condition examined in this paper involves both BVI and dynamic stall. 

Chaderjian et .al [4-5] showed that hover performance and blade loading was not a strong function of 
resolving the blade-tip vortices in the rotor wake, as it was previously thought.  Rather, it was more 
important to resolve the vortex formation at the blade tip using a combination of fine surface meshes and 
high-order spatial accuracy, at least 5th-order spatial accuracy, and maintaining a physically realistic 
turbulent eddy viscosity in the rotor wake using a detached eddy simulation (DES) turbulent length scale.  
Moreover, Chaderjian [6] recently showed that rotor performance for the UH-60A rotor in forward flight 
also did not depend significantly on resolving the tip vortices in the rotor wake, even for more challenging 
BVI and dynamic stall cases.  So, engineering resolution of the rotor wake is sufficient for predicting 
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rotor airloads, i.e., !S= 10% ctip, where !S is the Cartesian grid spacing in the rotor wake and ctip is the 
blade-tip chord length.  In these studies, OVERFLOW’s off-body adaptive mesh refinement (OB-AMR) 
was used to resolve the rotor wake using !S= 10%, 5%, and 2.5% ctip.  However, Lim et al. [7] and Jia et 
al. [8] showed that !S= 5% ctip is needed for accurate acoustic prediction in strong BVI cases.  Using !S= 
10% ctip can result in an underprediction of acoustic levels by 5dB, a significant difference.   

   
Although the prediction of dynamic stall for the UH-60A rotor (flight counter C9017) is generally 

good [6], there are some deficiencies in the predicted normal force and pitching moment coefficients, Cn 
and Cm, respectively.  This occurs surprisingly along the outer blade stations near azimuth angles of 
!=90º and 180º (see Fig. 16) where the flow is attached but experiencing BVI.  On the other hand, Cn and 
Cm are better captured in the dynamic stall region where 225º"!"360.  An important question remains:  
What is the cause of this discrepancy?  It seems unlikely that the turbulence model is the primary source 
for these differences since the forces and moments are well captured in the dynamic stall region.  Other 
potential causes are inadequate grid resolution on the rotor blades, uncertainty in the aeroelastic blade 
properties, or possibly the flight-test measurements themselves.  For example, anomalous behavior of 
certain pressure taps is occasionally apparent on the advancing side, but not the retreating side [9].   

The goal of this paper is to examine the effects of rotor-blade grid refinement on the predicted rotor 
airloads for dynamic stall flight counter C9017.  This is the first time OVERFLOW’s near-body adaptive 
mesh refinement (NB-AMR) is used on a flexible rotor blade in forward flight.  Establishing a grid-
resolved solution will help eliminate one potential cause for the discrepancies of the predicted forces and 
moments.  Convergence, stability and efficiency of the numerical approach will also be examined and 
time-dependent flow visualization will be used to better understand the fluid physics of dynamic stall.   

The following sections include a discussion of the flight-test data, numerical approach, results and 
discussion, and concluding remarks.   

2. Flight-Test Data 
NASA and the US Army, as a part of the UH-60A Airloads program, maintain an extensive flight-test 

database [10] for the Blackhawk helicopter (Figs. 1-2) in level trimmed flight and executing transient 
maneuvers.  The UH-60A blade properties are listed in Table 1, while Table 2 lists two flight conditions 
discussed in this paper.  The dynamic stall case, flight counter C9017, is the primary subject of this paper.  
The advance ratio, #, is a key parameter in forward flight and is the ratio of the freestream speed (V$) to 
the blade-tip speed (VTip), or equivalently freestream Mach number (M$) and blade-tip Mach number 
(MTip), respectively.  The blade-tip Reynolds number (ReTip), rotor shaft angle (%s), sideslip angle (!), and 
thrust coefficient (CT) are also given in Table 2.  

 
Figure 1 Sikorsky UH-60A Blackhawk heli-
copter on apron.  Note flexible blades. 

 
Figure 2 Sikorsky UH-60A Blackhawk heli-
copter in flight.   
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The UH-60A airloads database provides aerodynamic pressures, structural loads, control positions, 

and rotor forces and moments at 9 radial locations shown in Fig. 3.  A static trim tab is deflected to ensure 
that each blade flies in a similar manner with minimal vibration.  These deflections are unique to each 
Blackhawk helicopter, and the CFD simulations assume zero deflection.   

 
Acquiring in-flight measurements on a moving and deforming rotor blade is very challenging, and 

this database does have some unresolved discrepancies.  For example, the measured rotor thrust was 
determined from the helicopter’s gross weight and estimates of the loads on the fuselage and tail rotor.  
Measured pitch and roll moments at the hub were determined from a bending moment gauge located on 
the upper rotor shaft.  But an integration of the measured blade pressures sometimes compared poorly 
with the measured thrust and moments.  For example, Potsdam et al. [11] point out that the integrated 
thrust for flight counter C8534 was 10% higher than the measured thrust.  Moreover, the integrated hub 
moment was 50% larger with an 80-deg phase difference compared to the measured pitching moment.  
Some of these discrepancies have been attributed to the discovery of bad pressure taps, with the greatest 
effect on the pitching moments.  It is therefore common practice to subtract out the mean forces and 

Table 1 UH-60A rotor parameters. 

Parameter Value 
Number of Blades 4 

Radius, R 26.83 ft 
 Tip Chord, ctip 20.76 in 

Equivalent Blade Twist -18 deg 
Blade Tip Sweep 20 deg aft 

Geometric Solidity, s 0.0826 
Airfoils    SC1095/SC1094R8      

Thickness 9.5% chord 
Nominal Rotor Speed 258 rpm 
Nominal Tip Speed 725 ft/sec 

 
Table 2  Selected flight counter flow conditions. 

Flight Counter M$ MTip µ ReTip %s, deg !, deg CT 

C8534 (High Speed) 0.236 0.642 0.368 6.86x106 -7.31 1.28 0.00651 
C9017 (Dynamic Stall)* 0.158 0.666 0.237 4.62x106 -0.15 -1.58 0.0110 

  * Flow condition studied in this paper. 

 
Figure 3 UH-60A flight-test measurement stations [10].   
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moments over a rotor revolution for validating CFD results with this flight-test data.  That is the practice 
adopted in this paper. 

3. Numerical Approach 
The OVERFLOW CFD code is used to solve the time-dependent Reynolds-averaged Navier-Stokes 
equations for an isolated UH-60A rotor in forward flight.  This CFD code has a variety of implicit and 
relaxation algorithms that utilize upwind and central spatial differencing.  Both single and dual time 
integration options are available.  Curvilinear and Cartesian overset grids are used to treat complex 
geometries and the surrounding flow domain.  A variety of zero, one, and two-equation turbulence models 
are available to solve the RANS equations.  For more complex flows, transition trip lines and models, and 
detached eddy simulation (DES) are useful options.  A more complete description of the OVERFLOW 
CFD code and its user’s manual can be found in Refs. [2-3].  Some of the key aspects used in the present 
computations are described below. 

3.1 Overset Grids  

The current time-accurate approach consists of an inertial coordinate system where overset body-
conforming O-grids rotate through a fixed Cartesian background grid system.  Figure 4a-b shows the 
near-body (NB) grids that are used to resolve the flow in the vicinity of the rotor blades.  Each rotor blade 
consists of 4 grids: one inboard cap grid, two main body grids, and one outboard cap grid.  The two cap 
grids resolve the inboard blade root and outboard blade tip.  The main blade O-grid is split into upper and 
lower grids since the NB-AMR algorithm does not allow for periodic grids.  Three NB grids are also used 
to resolve the flow on a simplified rotor hub, see Fig. 4c.  The hub rotates with the rotor blades, however, 
the linkages between the hub and the blades are very complex and neglected.   

Surface grid resolution on the rotor blades is clustered in the chordwise direction near the airfoil 
leading and trailing edges to accurately resolve high pressure gradients.  The spanwise resolution along 
the rotor blade is nearly uniform, but clustered near the blade tip to accurately resolve the formation of the 
tip vortices.  The viscous grid spacing near the rotor-blade surface ensures that y+< 1 over most of the 
blade.  These fine blade grids represent a best attempt to resolve the flow without NB-AMR. All 
curvilinear body grids have a stretching ratio of less than 10% in all three coordinate directions.  This 
reduces the algorithm truncation error associated with 2nd-order accurate grid transformation metrics.  

An off-body (OB) Cartesian grid system, also shown in Fig. 4c, is designed to resolve the off-body 
vortex wake and extend the computational domain to the far field.  The grid transformation metrics are 
constant due to uniform Cartesian grid spacing.  Solutions are obtained by using a uniform Cartesian grid 
spacing of "=5%ctip on the first set of Level one (L1) grids that completely surround the rotor.  Additional 
“brick grids” are automatically added to the L1 grids to rapidly extend the computational domain to the far 
field, which for the present computations is 5 rotor radii (R) from the blades.  These brick grids are 
referred to as Levels 2, 3, …, each of which is a factor of 2 coarser in every direction than the previous 
grid level.  Table 3 summarizes grid size statistics for the baseline NB grids before any AMR.   
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3.2 Numerical Algorithm 

The Navier-Stokes equations in strong conservation-law form are given by 
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where Q=[#,  #u,  #v,  #w, e]T is the vector of conserved variables, i.e., density, momentum and total 
energy; F, G, and H are the inviscid flux vectors; and  Fv, Gv, and Hv are the viscous flux vectors.  An 
implicit approximate factorization scheme in delta form is used to solve Eq. (1) in generalized curvilinear 
coordinates, and is given by 
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a) Inboard NB rotor blade grids.          b) Outboard NB rotor blade grids. 

 
c) Cartesian OB grid system. 

Figure 4  UH-60A rotor-blade overset grid system. 

Table 3  Summary of UH-60A baseline overset grid size. 

Grid Type Number of Grids Surface Grid Points Volume Grid Points 
Rotor Blade 4 117,763 11.8 million 
Rotor Hub 3 28,875   2.5 million 

4-Bladed Rotor with Hub 19 499,927 49.7 million 
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In these equations, @< / @XY, where J is the coordinate transformation Jacobian.  The superscript k is the 
sub-iteration index, while the superscript n is the time-step index.  The physical and pseudo (relaxation) 
time steps are !t and !$, respectively.  Finally, Z@<8 / @<8[\ A @<8, where sub-iteration convergence 
implies that , which is 2nd-order accurate in time.   

Equation 2 is solved using the Pulliam-Chaussee [12] diagonal algorithm.  A baseline time step of 
"t=&° rotation with 100 sub-iterations is used.  This nominally exceeds a 2.5-order L2-norm sub-iteration 
drop between time steps.  The application of NB-AMR may require smaller time steps to maintain a 
reasonable number of sub-iterations.  Throughout this sub-iteration process the Navier-Stokes algorithm 
becomes fully implicit and the approximate factorization and time linearization errors are sufficiently 
removed.   

Central differencing is used for all spatial operators throughout this paper.  For example, the 
convective terms use 6th-order central differences with a 5th-order artificial dissipation term to damp out 
high-frequency errors.  This results in a 5th-order accurate discretization on the uniform Cartesian OB 
grids.  However, all viscous terms are evaluated with 2nd-order accurate central differences.  The grid 
metrics on the curvilinear NB grids are also 2nd-order 
accurate in space.  This discretization is referred to as 5th-
order spatial differencing throughout this paper.  
Although the algorithm is still formally 2nd-order accurate 
in space, computed results show that this differencing 
scheme has lower diffusion and dispersion errors, and an 
improved flow field resolution than a 3rd-order approach.  
Table 4 summarizes the convective central difference 
operators available in OVERFLOW.  Further details are 
described by Pulliam [13].  

3.3 Adaptive Mesh Refinement 

An AMR capability is available in OVERFLOW to 
dynamically resolve flow features with finer meshes 
within the off-body Cartesian grids, Fig. 4c, and within the 
curvilinear near-body grids, Fig. 4a-b.  A brief description 
of the procedure is now provided.   

OB-AMR begins with a baseline Cartesian Level-1 
grid that surrounds the rotor with resolution !S.   The 
rotor wake can be further refined with AMR through 
successively finer overlapping grids.  Each level of 
refinement decreases the local Cartesian grid spacing by a 
factor of one half in each coordinate direction, i.e., the 
refinement is isotropic in space.  Thus, a two-level OB-
AMR refinement would identify the vortex-wake 
structures and overlay the surrounding Level-1 Cartesian 
grid spacing (!S) with two more Cartesian grids with grid 
spacing ' !S and & !S.  An example for a rotor in hover 
is shown in Fig. 5.  The local grid size grows by 8X for 

Q̂k ! Q̂n+1

Table 4  Convective central difference operators. 

Cartesian Wake 
Grid Accuracy 

Difference 
Stencil 

Artificial 
Dissipation 

   

   

   

   

   

 

O(!X 2 ) ! X
(2)

 
! (!X 3)"

X4

O(!X 3) ! X
(4 )

 
! (!X 3)"

X4

O(!X 4 ) ! X
(4 )

 
! (!X 5 )"

X6

O(!X 5 ) ! X
(6)

 
! (!X 5 )"

X6

O(!X 6 ) ! X
(6)

 
! (!X 7 )"

X8

 
Figure 5 Example of OVERFLOW two-level 
dynamic AMR grid system for a rotor in hover 
[4-5]. Vortices colored by vorticity magnitude, 
OB-AMR grid spacing !S=10% ctip, !S/2, !S/4. 

 "S/4 
 

 "S/2 
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each level of refinement.  This approach is more efficient than selecting a single larger Cartesian region of 
grid spacing & !S to resolve the entire rotor wake.  Overlapping grids of different resolution transfer data 
between grids with tri-linear interpolation.  The AMR process can be limited so that only regions of 
interest are refined rather than continuing indefinitely throughout the entire flow field.   

A somewhat different OB-AMR strategy is employed in this paper that eliminates interpolation errors 
within the resolved rotor wake for dynamic stall case C9017.   This is accomplished by only using Level-
1 grids to automatically capture and resolve the rotor wake region (see Fig. 6).  Level-1 grids share the 
same grid spacing, !S, and therefore have coincident grid points when they overlap with each other.  Data 
is therefore transferred between these Level-1 wake grids by direct injection, i.e., no interpolation is 
required. Tri-linear interpolation is only needed when dissimilar grids overlap with each other.   

 
The AMR process depends on a sensor function, SF, and user-specified parameters that determine 

where to refine, coarsen, or leave the grid resolution unchanged.  References [4-6] used a vorticity 
magnitude sensor function for OB-AMR.  With this approach, once a threshold is reached, grid 
refinement is carried out to the fullest amount specified.  So, a two-level refinement will refine the local 
mesh to !S/4, or a three-level refinement to !S/8, etc.   

Another approach, and the one used in this paper, uses a 2nd-order undivided difference.  The term 
“undivided” refers to the difference not being divided by the appropriate grid cell size term, i.e., !x for 
the first-difference, !x2 for the second difference, etc.  In the context of computing SF as a general sensor 
function for adaption, it is (a) normalize by a reference quantity Qref, (b) square it to create a non-negative 
value, (c) take the maximum over all elements of Q, and (d) take the maximum over all coordinate 
directions:  

 ]N / ^_`
abcC8Cd

e ^_`
"fgh^ihjkjlm

no"pqr's"p["ptr
sf"uvw

x
s
yz (3) 

This function is non-dimensional, independent of grid units, and becomes smaller as the grid is refined 
(where Q is smooth), all desirable properties for a sensor function for solution adaption. Further, it is 
simple to compute and the computation can be fully parallelized.  Equation 3 therefore refines the local 
mesh in regions of high solution curvature.  The AMR process is carried out in such a manner so that all 
adjacent overlapping grids differ by no more than 2x the grid spacing, see Fig. 11.  Further details of the 
OB-AMR process are described by Buning and Pulliam [14].   

 
Figure 6.  Side view of vortex wake resolved with OB-AMR Level-1 grids (vorticity 
magnitude gray scale).  Flight counter C9017, !S=5% ctip, 3700 grids, 210 million grid points. 

V! 
Level 1 

Level 2 

Level 3 

OB-AMR 
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The NB-AMR is carried out is a similar manner as the OB-AMR.  However, the NB-AMR operates on 
curvilinear grids, which look Cartesian in computational (or index) space.  Parametric cubic interpolation 
is used to transfer data between grids of different resolution.  This approach preserves smooth geometry, 
avoiding faceting of the surface that would occur with linear interpolation.  Further details of the NB-
AMR process are described by Buning and Pulliam [15].   

3.4 Turbulence Model 
The rotor simulations presented in this study use the one-equation Spalart-Allmaras (SA) turbulence 
model [16].  Some of the model’s key features are now described. 

The SA model uses the Boussinesq approximation to relate the Reynolds stresses to a kinematic 
turbulent eddy viscosity and the mean strain-rate tensor.  The turbulent eddy viscosity (TEV) is given by 

  
The SA transport equation for the variable , is given by  

   (4) 

where D/Dt is the material time derivative.  The right hand side consists of production, dissipation and 
diffusion source terms.  The constants Cb1, Cb2, Cw1, k, %, and functions fv1, fv2, fw, are described by Spalart 
and Allmaras [16], and ( is the magnitude of vorticity.  The damping function, fv1, reduces &t near a solid 
wall, i.e., the laminar sublayer.  The turbulent length scale, d, is defined as the distance to the nearest 
wall.   

Rotor blade-tip vortices are a dominant structure in the turbulent rotor wake.  They are initially 
formed at the rotor tip by the roll-up of the blade trailing edge shear layers.  Figure 7 is a laser light sheet 
flow visualization of a fully formed tip vortex reported by Ramasamy et al. [17].  He identified three 
vortical regions.  The outer region 3 can be characterized by a turbulent flow whose mean velocity field is 
similar to a potential vortex.  Region 2 is an intermediate state that contains turbulent eddies of varying 
size. The inner-most region 1 can be characterized as stratified layers having few or small eddies with 
little interaction between fluid layers, due to high streamwise curvature.  This inner-core region has a 
near-linear velocity profile and very low fluid strain.  

 
Regions of high streamline curvature reduce 

the fluctuating velocity components and hence the 
turbulent production.  Shur et al. [18] introduced a 
SA rotation and/or streamline curvature (SARC) 
correction for rotating and curved flows. The 
SARC correction not only improves the boundary 
layer profiles for highly curved flows, but also 
helps reduce the TEV in the tip vortex cores.  The 
SARC correction is used for all SA turbulent 
simulations in this paper.   

An additional degree of realism can be 
obtained by the use of large eddy simulation 
(LES).  In LES the largest turbulent eddies are 
resolved using a small grid spacing, !, and the 
subgrid-scale (SGS) eddies are modeled.  
Smagorinsky [19] first postulated a SGS model 
for the Reynold’s stresses based on the following 
expressions 

 ! t = !! f! 1
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Figure 7 Laser light sheet flow visualization of a fully 
developed blade-tip vortex, Ramasamy et al. [17]. 
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These two figures indicate that the CFD solutions are grid converged.  It is unlikely that the turbulence 
model is responsible for the noted discrepancies at *=90° since the solution compared better with flight-
test data on the retreating side, where stall occurs, than on the advancing side, where the flow is mostly 
attached.  It is more likely that uncertainties in the rotor blade aeroelastic properties, such as moments of 
inertia, or flight-test measurement discrepancies reported in Ref [11] are responsible for these differences.   

Figure 22 displays four frames taken from a time-dependent animation showing the dynamic nature of 
the NB-AMR2 process.  An outline of the near-body grids are shown on selected spanwise stations and 
colored by a transparent vorticity magnitude.  The transparency highlights flow structures near the blade 
surface while deemphasizing flow structures away from the blade surface.  These images show fewer 
AMR grids on the advancing side, *=90° and 180°, where the flow is relatively attached, and more AMR 
grids on the retreating side, *=270° and 360°, where the flow is separated.  The NB-AMR process is 
refining the flow physics where it is needed, and with greater efficiency than using uniform grid 
refinement throughout the entire NB grids. 

 
Figure 23 provides a closeup view of the third quadrant vortex wake for NB-AMR0, NB-AMR1 and 

NB-AMR2.  The NB-AMR1 and NB-AMR2 solutions provide greater detail of the flow separation and 
vortex rings than the baseline NB-AMR0 case.  However, it is also noted that the flow structures for NB-
AMR1 and NB-AMR2 are almost indistinguishable.  This supports the conclusion, together with Figs. 20-
21,  that the flow is both quantitatively and qualitatively grid resolved.   

Figure 24 shows two snapshots in time from animations of the NB-AMR0 and NB-AMR2 simulations.  
These correspond to the first stall event at *=270°.  The viewpoint moves with the blade tip and shows 
transparent vorticity magnitude contours along the blade’s span.  Similar to Fig 23, NB-AMR2 provides 
greater detail of the dynamic stall flow separation than NB-AMR0.   

   
a) *=0° or 360° b) *=90° 

   
c) *=180° d) *=270° 

Figure 22  Outline of NB-AMR2 grids at selected spanwise locations on a rotor blade. 
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Table 6 summarizes the computer wall-clock time used for the three NB-AMR resolutions.  The 

computer time and cost grow significantly with NB-AMR grid refinement (see 4th column).  However, the 
computational efficiency (see 6th column) also degrades significantly.  On the other hand, the 

 
 a)  NB-AMR0 

   
 b)  NB-AMR1 c)  NB-AMR2 

Figure 23  Close up view of vortex wake at * =270°.  Q-criterion colored by vorticity magnitude..  . 

   
b)  NB-AMR0 b)  NB-AMR2 

Figure 24  Snapshot from time-dependent animation (* =270°).  Cutting planes colored by transparent 
vorticity magnitude. 
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computational efficiency was found to improve with OB-AMR grid refinement, see Table 7 from Ref [6].  
These opposite trends are probably attributed to at least two factors:  1) The computational cost/grid point 
is higher for curvilinear grids than Cartesian grids; 2) NB-AMR has slower temporal convergence than 
OB-AMR due to CFL restrictions.  This second issue is related to isotropic grid refinement on highly 
non-isotropic body grids, especially with fine grid spacing normal to the viscous wall.   

 

 

5.  Conclusions 
Time-dependent flow simulations for a NACA 0012 airfoil and a flexible UH-60A Blackhawk helicopter 
rotor undergoing dynamic stall has been carried out using the OVERFLOW Navier-Stokes CFD code. 
Second-order dual-time accuracy and 5th-order spatial accuracy was used throughout this study.  
OVERFLOW’s NB-AMR was used to improve the curvilinear body-grid resolution while OB-AMR was 
used to resolve the UH-60A rotor wake with a Cartesian grid spacing of !S=5%ctip.  The Spalart-Allmaras 
RANS turbulence model was used for 2D flows while the hybrid RANS/LES model (DDES) was used for 
3D flows.   
NACA 0012 Airfoil Results 

Up to four levels of NB-AMR where applied to a baseline O-mesh.   

¥! The 2nd-order undivided difference sensing function performed well, automatically finding all 
relevant flow features.  There was no need to change the default sensor parameters, making it 
easy to use.   

¥! The number of dual-time sub-iterations increased from 50-150 with NB refinement.  This 
bounded the change in RMS lift, drag and pitching moment coefficients within 0.25%.   

¥! A 2.5-order L2-norm sub-iteration drop is recommended to maintain 2nd-order dual-time 
accuracy for dynamic stall.   

¥! The change in RMS lift and drag coefficients were bounded within 1% with two levels of NB 
refinement while the pitching moment coefficient required three levels of refinement.   

¥! Isotropic grid refinement produced rapid grid growth.  A baseline grid should be designed so 
that only 2-3 levels of NB-AMR are needed to achieve a grid-converged solution.   

 

Table 6  Summary of computer wall-clock time using 5,600 Skylake CPU cores with two threads. 

Flight Counter C9017 - (Dynamic Stall) 

NB-AMR Resolution # Grids # Grid Points Time/Rev Relative Time Time/Rev/ 
100 Million GP 

NB-AMR0 3,700 210 million 6.6 hr 1.0 3.1 
NB-AMR1 8,000 360 million 17.6 hr 2.7 4.9 
NB-AMR2 14,533 675 million 60.4 hr 9.2 8.9 

 
Table 7.  Summary of computer wall-clock time using 5,600 Broadwell CPU cores with two threads [6]. 

Flight Counter 9017 – (Dynamic Stall) 

OB-AMR Resolution # Grids # Grid Points Time/Rev Relative Time Time/Rev/ 
100 Million GP 

!S=10%ctip 870 78 million 5.6 hr 1.0 7.2 
!S=5%ctip 3,200 236 million 9.5 hr 1.7 4.0 

!S=2.5%ctip 14,500 1.29 billion 26.0 hr 4.6 2.0 
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UH-60A Rotor Results  

•! 3D dynamic stall was significantly more complex and different than 2D dynamic stall.  Some 
of these differences include: 

o! BVI-induced flow separation. 

o! The release of vortex rings from the rotor blades rather than simple 2D vortices.   

o! Flow separation can alter the path of blade-tip vortices, possibly affecting the 
following bladeÕs airloads and acoustics.   

•! NB-AMR was considerably more difficult to apply in three dimensions.  It was turned off 
within 2% ctip of the rotor blade surface, typically well within the bladeÕs boundary layer.   

o! It was difficult to maintain algorithm stability when applying NB-AMR all the way to 
the blade surface, mostly due to CFL stability restrictions. 

o! Turning off NB-AMR near the blade surface also helped control grid growth, 
especially in separated flow regions.  Two levels of unrestricted NB-AMR resulted in 
over 1 billion grid points. 

•! There was little change in the blade sectional airloads, even with two levels of NB-AMR.   

o! The baseline solution is grid converged.   

o! There was overall good agreement between CFD and flight-test measured airloads. 

o! The agreement was better on the retreating side, where there is dynamic stall and 
significant flow separation, compared to the advancing side, which is mostly attached 
flow.  It is more likely that these differences are due to uncertainties in the aeroelastic 
blade properties or flight-test measurements rather than the turbulence model.   

•! Time-dependent flow animations provided insight into the NB-AMR process.   

o! NB-AMR provided much finer resolution and detail of the separated flow. 

o! The 2nd-undivided difference sensor function performed well, finding all relevant 
flow features without any user adjustment, similar to the 2D results.   

•! Computational efficiency was found to improve with OB-AMR but decrease with NB-AMR. 

o! There are at least two reasons for this difference. 

! ! The computational cost/grid point is higher for curvilinear grids than 
Cartesian grids 

! ! NB-AMR has slower temporal convergence than OB-AMR due to CFL 
restrictions. 

•! A non-isotropic NB-AMR process would probably alleviate some of these NB refinement 
difficulties.   
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