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The reliability of the propulsion system of an aircraft is paramount for the aircraft
safety and hence the aircraft health must be monitored continuously. In contrast to fuel-
operated aircraft, electric battery-operated propulsion system poses speci�c problems, such
as, the remaining battery power does not linearly decrease and cannot be measured directly.
In this paper, we describe a combined monitoring and prognostics architecture that can
continuously monitor all components of the electric propulsion system with respect to
safety and performance properties as well as state of charge and rest of useful life for
the battery. Our system combines a detailed electrochemical battery model for Li-ion
batteries with a powerful prognostics engine based upon an Unscented Kalman Filter with
the R2U2 monitoring device, which provides e�cient observers for metric temporal logic
and Bayesian reasoning. R2U2 is a real-time, real〉zable, respons〉ve, unobtrus〉ve un〉t,
which continuously monitors sensor readings, outputs of the prognostics engine, as well as
the 
ight software status for safety, performance, and security properties. We illustrate
our architecture with two case studies, one reporting actual 
ight tests with an X8+ octo-
copter and the other a software-in-the-loop simulation with an unmanned Edge 540 electric
aircraft model.

I. Introduction

The reliable operation of the propulsion system of an aircraft is vital for its safety. As a result, the health
of the propulsion system must be monitored continuously and failures diagnosed immediately. There also
must be means to, at any point in time during the 
ight, reliably estimate if enough resources (gas, battery
capacity) are available to safely conclude the 
ight, even under failure conditions. In traditional gas-powered
aircraft, the pre-
ight calculation of the necessary fuel, and ample fuel reserves are prerequisites for a safe

ight. The pilots are trained to carefully watch the operation of the engines and the fuel consumption and
estimate the remaining fuel during the 
ight based on their expertise and experience. Yet there have been
numerous incidents where empty fuel tanks led to dangerous situations or accidents.1

On an aircraft with battery-powered electric propulsion, the situation is much more complicated. The
remaining time the aircraft can continue its 
ight depends on the current and future capacity of the on-board
batteries. That battery capacity cannot be measured directly and depends, in a highly non-linear way, on
numerous factors such as, the age of the battery, number of loading cycles, temperature, and drawn current.
This makes a simple \battery gauge" impossible. In addition, the energy density (kWh/kg) of state-of-the-
art batteries is comparatively low. Thus carrying ample battery reserves on board is not possible due to
their prohibitive weight. Therefore, the current battery capacity and remaining available 
ight time must be
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estimated with high accuracy and con�dence throughout the entire 
ight and the entire propulsion system
must be monitored with respect to safety and performance properties on-board and in real time.

To this end, in this paper, we present (a) a high-�delity battery performance model that is based upon
electro-chemical reactions, (b) a powerful prognostics engine, which uses this model to provide, in real-time,
reliable estimates of the state-of-charge (SoC) of the battery as well as it rest of useful life (RUL) under
various load conditions, and (c) a monitoring framework (R2U2) for the on-board monitoring of the aircraft's
propulsion system, continuous checking of safety properties, as well as on-board diagnosis and probabilistic
root cause analysis.

Our integrated framework uses state-of-the-art technology like Unscented Kalman Filters (UKF), mon-
itoring with temporal logic observers, and Bayesian reasoning. Its output comprises safety status of the
aircraft and predicted energy capacities and can also include a measure on the estimates' con�dence. This
information can be provided to the pilot of the electric aircraft using a suitable display and annunciation (not
part of this paper). For the operation of an unmanned aerial system (UAS), the output of our prognostics
and monitoring system can be directly fed into the on-board autopilot system.

The rest of the paper is structured as follows: Section II discusses related work on prognostics and system
health management. In Section III we present our electro-chemical battery model. Our prognostics engine
will be discussed in Section IV; Section V provides an overview of our monitoring framework and shows
some examples of health management properties. In Section VI we present our case studies and Section VII
discusses future work and concludes.

II. Related Work

Previous work on battery health monitoring introduced several tools for battery discharge prediction
onboard an electric aircraft. Work by Bole et. al.2 discusses a battery equivalent circuit model to simulate
battery health state. Current and voltage pro�les logged during 
ights of a small electric airplane further
tuned the battery model.2 The implementation of a 
ight plan with upper and lower uncertainty bounds on
the required energy consumption to complete the mission successfully is presented by Quach et. al.3 along
with an approach to identify additional parasitic battery loads. A veri�cation testing procedure intended
to build trust in predictions of remaining 
ying time prior to actual 
ight testing is presented with results
from several 
ights and the veri�cation testing of remaining 
ying time prior to 
ight testing is discussed
in earlier publications.3, 4 The key idea behind these earlier works is to demonstrate the translation of
system performance goals and safety requirements into an warning system that indicates the operator when
the estimated remaining 
ying time falls below a certain threshold. Hogge et. al.5 demonstrated some of
the variation the powertrain and the pilot may introduce while verifying and analyzing any risks before the
actual 
ight. This was accomplished through several vehicle ground tests, which provides the closest possible
testing conditions to an actual 
ight.

There is a wealth of temporal-logic runtime monitoring techniques in software, including automata-based,
low-overhead techniques,6, 7 Copilot,8 or BusMOP.9, 10 These systems focus on property monitoring using
variants of temporal logic, but do not combine monitoring with Bayesian probabilistic reasoning or with a
prognostics engine. The integration of R2U2 with a prognostics engine and Bayesian reasoning is described
in an earlier paper.11

III. Battery Modeling

In order to predict end-of-discharge (EOD) as de�ned by a voltage cuto�, the battery model must compute
the voltage as a function of time given the current drawn from the battery. There are several electro-chemical
processes that contribute to the cell's potential that make this a di�cult problem. For the purposes of on-line
prognostics, we focus here on a lumped-parameter ordinary di�erential equations form that still considers
the main electro-chemical processes.

The voltages of a single cell in a battery pack are summarized in Figure 1 (adapted from the paper by
Rahn and Wang12). The overall battery voltage V(t) is the di�erence between the potential at the positive
current collector, � s(0; t), and the negative current collector, � s(L; t ), minus resistance losses at the current
collectors (not shown in the diagram). As shown in the �gure, the potentials vary with the distance d 2 [0; L ],
because the loss varies with distance from the current collectors. Details of the developed battery model are
discussed in the paper by Daigle & Kulkarni.13
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which a (weak) battery might heat up. A number of examples belonging to this category can be found in
literature. 11, 24

V.A.3. Prognostics-based Safety Properties

There is a number of safety properties that de�ne 
ight safety with respect to the future 
ight path of the
aircraft. For example, the current 
ight plan requires the aircraft to 
y over a high mountain. Obviously
the climb to the top uses up considerable battery power, so the pilot (or autopilot) must ensure that during
the 10-minute climb, the battery level never goes below 30%. Such a property can be easily speci�ed in
temporal logic within our R2U2 framework:

� (climb-mountain ! � [0 min ;9 min] (� SOC > 30%):

There is only one catch: R2U2 is no magic crystal ball, which can look into the future. Thus the above
formula can only be valuated after 10 minutes; prior to that time, R2U2 returns maybe. This is, of course,
not helpful if the pilot or auto-pilot has to make the decision if to 
y over the mountain or not prior to even
attempting the climb.

We therefore integrate the prognostics engine into the R2U2 framework. We now can formulate safety
properties that directly access prognostics information. The above safety property now would be simply
formulated as:

� (climb-mountain ! RUL(climb ) > 10 min);

where RUL(climb ) is the rest of useful life estimate, after the 
ight plan, given in the argument has been

own. This formula can be evaluated immediately and can indicate to the pilot if the climb can be attempted
safely or not. In Section VI, we discuss such properties in more detail.

VI. Case Studies

VI.A. SOC Estimate for an Octo-copter

The prognostics architecture and R2U2 was implemented as part of the AOS system29 and test-
own suc-
cessfully on an X8+ octo-copter at the NASA Ames Research Center. For safety reasons, all 
ights had
been executed while the UAS was tethered. R2U2 and the prognostics engine monitor the UAS system,

ight rules, and the battery with an update rate of 0 :5 Hz. After manual takeo�, the aircraft was directed
to approach the tra�c pattern of a scaled-down version of a tra�c pattern near an airport. After obtaining
ATC clearance to enter the tra�c pattern, the UAS 
ies along the tra�c pattern. However, no clearance for
landing is given, so the UAS has to 
y go-arounds. During the entire 
ight, the battery (voltage and current)
and numerous signals are monitored. R2U2 checks for nominal battery voltage (BATTVOLTAGENOM) as well
as for battery voltages that are su�cient for a climb ( BATTVOLTAGECLIMB) as well as other battery-related
signals. Figure 6A shows the three-valued outputs of the R2U2 observers, shown in 0.5Hz timesteps.

During this test 
ight, the UAS enters the tra�c pattern at around t = 300s and 
ies 4 circles around the
tra�c pattern (as indicated by mitigation T0). The battery is being discharged and at aroundt = 500s, the
voltage sometimes drops below the minimal level suggested for a climb (BATTVOLTAGECLIMB). At t = 600s
the battery voltage drops below the abort threshold of Ubatt < 14:2V for more than 10 consecutive seconds,
causing the signalmitigation T1 to become true. On-board logic then requests an immediate clear-to-land
from ATC, which is indicated by the R2U2 output ATCCLRLANDING. This causes the autopilot to carry out
an immediate landing, which ends the scenario.

Figure 6B shows measured battery voltage and current as well as the estimated SOC in % during the

ight. The bottom panel shows the estimated RUL for a predicted constant current draw of �I = 20A. Since
this scenario does not involve any strong climbs, the estimation of RUL with a constant load seems to be
appropriate. Uncertainties in the current draw can be modeled in our architecture by carrying out the RUL
estimation for samples from a Gaussian distributed load currentI = N )( �I; � ). Figure 7 shows how the
probability density function (PDF) for �I = 20A and � = 4 develops during the 
ight time. As expected, the
mean of RUL is a straight line as in Figure 6B and the variance of RUL decreases toward the end of the

ight experiment.

8 of 12

American Institute of Aeronautics and Astronautics



0 200 400 600 800 1000
14

15

16

U
ba

tt
[V

]

0 200 400 600 800 1000
0

50

I ba
tt

[V
]

0 200 400 600 800 1000
0

50

100

S
O

C
[%

]

0 200 400 600 800 1000
0

500

1000

1500

R
U

L[
s]







21 Daigle, M., Saha, B., and Goebel, K., \A comparison of �lter-based approaches for model-based prognostics," Proceedings
of the 2012 IEEE Aerospace Conference , March 2012.

22 Daigle, M., Saxena, A., and Goebel, K., \An E�cient Deterministic Approach to Model-based Prediction Uncertainty
Estimation," Annual Conference of the Prognostics and Health Management Society , Sept. 2012, pp. 326{335.

23 Caccamo, M., \Power-Aware Emulation Environment for long-endurance Solar UAVs," 2017.
24 Rozier, K. Y. and Schumann, J., \R2U2: Tool Overview," RV-CuBES 2017. An International Workshop on Competitions,

Usability, Benchmarks, Evaluation, and Standardisation for Runtime Veri�cation Tools, September 15, 2017, Seattle, WA,
USA , 2017, pp. 138{156.

25 Reinbacher, T., Rozier, K. Y., and Schumann, J., \Temporal-Logic Based Runtime Observer Pairs for System Health
Management of Real-Time Systems," Tools and Algorithms for the Construction and Analysis of Systems - 20th International
Conference, TACAS 2014, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014. Proceedings , edited by E. �Abrah�am and K. Havelund, Vol. 8413 of Lecture Notes in
Computer Science , Springer, 2014, pp. 357{372.

26 Geist, J., Rozier, K. Y., and Schumann, J., \Runtime Observer Pairs and Bayesian Network Reasoners On-board FPGAs:
Flight-Certi�able System Health Management for Embedded Systems," Runtime Veri�cation - 5th International Conference,
RV 2014, Toronto, ON, Canada, September 22-25, 2014. Proceedings , edited by B. Bonakdarpour and S. A. Smolka, Vol. 8734
of Lecture Notes in Computer Science , Springer, 2014, pp. 215{230.

27 Schumann, J., Rozier, K. Y., Reinbacher, T., Mengshoel, O. J., Mbaya, T., and Ippolito, C., \Towards Real-time, On-
board, Hardware-supported Sensor and Software Health Management for Unmanned Aerial Systems," Proceedings of the 2013
Annual Conference of the Prognostics and Health Management Society (PHM2013) , October 2013, pp. 381{401.

28 Schumann, J., Rozier, K. Y., Reinbacher, T., Mengshoel, O. J., Mbaya, T., and Ippolito, C., \Towards Real-time, On-
board, Hardware-supported Sensor and Software Health Management for Unmanned Aerial Systems," International Journal of
Prognostics and Health Management , October 2015, pp. to appear.

29 Lowry, M., Bajwa, A. R., Pressburger, T., Sweet, A., Dalal, M., Fry, C., Schumann, J., Dahl, D., Karsa, G., and
Mahadevan, N., \Design Considerations for a Variable Autonomy Exeuctive for UAS in the NAS," 2018 AIAA Information
Systems-AIAA Infotech @ Aerospace , 2018.

12 of 12

American Institute of Aeronautics and Astronautics











21Daigle, M., Saha, B., and Goebel, K., \A comparison of �lter-based approaches for model-based prognostics," Proceedings
of the 2012 IEEE Aerospace Conference , March 2012.

22Daigle, M., Saxena, A., and Goebel, K., \An E�cient Deterministic Approach to Model-based Prediction Uncertainty
Estimation," Annual Conference of the Prognostics and Health Management Society , Sept. 2012, pp. 326{335.

23Caccamo, M., \Power-Aware Emulation Environment for long-endurance Solar UAVs," 2017.
24Rozier, K. Y. and Schumann, J., \R2U2: Tool Overview," RV-CuBES 2017. An International Workshop on Competitions,

Usability, Benchmarks, Evaluation, and Standardisation for Runtime Veri�cation Tools, September 15, 2017, Seattle, WA,
USA , 2017, pp. 138{156.

25Reinbacher, T., Rozier, K. Y., and Schumann, J., \Temporal-Logic Based Runtime Observer Pairs for System Health
Management of Real-Time Systems," Tools and Algorithms for the Construction and Analysis of Systems - 20th International
Conference, TACAS 2014, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS
2014, Grenoble, France, April 5-13, 2014. Proceedings , edited by E. �Abrah�am and K. Havelund, Vol. 8413 of Lecture Notes in
Computer Science , Springer, 2014, pp. 357{372.

26Geist, J., Rozier, K. Y., and Schumann, J., \Runtime Observer Pairs and Bayesian Network Reasoners On-board FPGAs:
Flight-Certi�able System Health Management for Embedded Systems," Runtime Veri�cation - 5th International Conference,
RV 2014, Toronto, ON, Canada, September 22-25, 2014. Proceedings , edited by B. Bonakdarpour and S. A. Smolka, Vol. 8734
of Lecture Notes in Computer Science , Springer, 2014, pp. 215{230.

27Schumann, J., Rozier, K. Y., Reinbacher, T., Mengshoel, O. J., Mbaya, T., and Ippolito, C., \Towards Real-time, On-
board, Hardware-supported Sensor and Software Health Management for Unmanned Aerial Systems," Proceedings of the 2013
Annual Conference of the Prognostics and Health Management Society (PHM2013) , October 2013, pp. 381{401.

28Schumann, J., Rozier, K. Y., Reinbacher, T., Mengshoel, O. J., Mbaya, T., and Ippolito, C., \Towards Real-time, On-
board, Hardware-supported Sensor and Software Health Management for Unmanned Aerial Systems," International Journal of
Prognostics and Health Management , October 2015, pp. to appear.

29Lowry, M., Bajwa, A. R., Pressburger, T., Sweet, A., Dalal, M., Fry, C., Schumann, J., Dahl, D., Karsa, G., and
Mahadevan, N., \Design Considerations for a Variable Autonomy Exeuctive for UAS in the NAS," 2018 AIAA Information
Systems-AIAA Infotech @ Aerospace , 2018.

12 of 12

American Institute of Aeronautics and Astronautics


