
Comparing and Integrating Constraint Programming and Temporal Planning
for Quantum Circuit Compilation

Kyle E. C. Booth4;0, Minh Do2;4, J. Christopher Beck0, Eleanor Rieffel1, Davide Venturelli1;3, Jeremy Frank2
0 Department of Mechanical & Industrial Engineering, University of Toronto
1 Quantum Arti�cial Intelligence Laboratory, NASA Ames Research Center

2 Planning and Scheduling Group, NASA Ames Research Center
3 USRA Research Institute for Advanced Computer Science (RIACS)

4 Stinger Ghaffarian Technologies (SGT Inc.)

Abstract

Recently, the makespan-minimization problem of compiling
a general class of quantum algorithms into near-term quan-
tum processors has been introduced to the AI community. The
research demonstrated that temporal planning is a strong so-
lution approach for the studied class of quantum circuit com-
pilation (QCC) problems. In this paper, we explore the use
of methods from operations research, speci�cally constraint
programming (CP), as an alternative and complementary ap-
proach to temporal planning. We also extend previous work
by introducing two new problem variations that incorporate
important characteristics identi�ed by the quantum comput-
ing community. We apply temporal planning and CP to the
baseline and extended QCC problems as both stand-alone and
hybrid approaches. The hybrid method uses solutions found
by temporal planning to warm-start CP, leveraging the ability
of temporal planning to �nd satis�cing solutions to problems
with a high degree of task optionality, an area that CP typ-
ically struggles with. These solutions are then used to seed
the CP formulation which signi�cantly bene�ts from inferred
bounds on planning horizon and task counts provided by the
warm-start. Our extensive empirical evaluation indicates that
while stand-alone CP is not competitive with temporal plan-
ning, except for the smallest problems, CP in a hybrid setting
is bene�cial for all temporal planners in all problem classes.

1 Introduction
Quantum computers apply quantum operations, called quan-
tum gates, to qubits, the basic memory unit of quantum pro-
cessors. Quantum algorithms are often speci�ed as quan-
tum circuits on idealized hardware since physical hardware
has varying characteristics and architectures. These ideal-
ized quantum circuits must be compiled to speci�c hardware
by adding additional gates that move qubit states to locations
where the desired gate can act on them. Compilations that
minimize the duration not only return results more quickly,
but are vital to obtain results on near-term quantum hard-
ware that does not support signi�cant quantum error correc-
tion or fault tolerance: decoherence effects can destroy the
computation in a short time. For this reason, it is critical to
minimize computation duration.

Recently, use of temporal planners to compile quantum
circuits was explored (Venturelli et al. 2017); machine in-
structions were modeled as PDDL2.1 durative actions, en-
abling domain-independent temporal planners to �nd a par-

allel sequence of con�ict-free instructions to implement the
high-level quantum algorithm. Several state-of-the-art tem-
poral planners were used to show empirically that temporal
planning is a promising approach to compile circuits of var-
ious sizes to a model hardware chip featuring the essential
characteristics of newly emerging quantum hardware.

In this paper, we extend the earlier work in three direc-
tions. First, we explore constraint programming (CP) as a
complementary approach to temporal planning for quantum
circuit compilation (QCC). Historically, operations research
(OR) techniques have been the best approach for many com-
binatorial optimization problems and serve as the backbone
of a number of planners. Our most signi�cant investigation
explores CP as an alternative to temporal planning for QCC.
We use CP as either (1) a stand-alone approach or (2) work-
ing in tandem with temporal planners. Our main contribu-
tions are:
� A CP approach for QCC that is competitive with exist-

ing temporal planners on small problems, though not for
larger problems.

� A hybrid planning/CP approach where temporal-planning
solutions are used to warm-start the CP solver. Given the
same amount of running time, our hybrid consistently out-
performs both stand-alone temporal planning and CP ap-
proaches across all solvers and problem classes.

Second, we expand the previous problem de�nition (Ven-
turelli et al. 2017) to include further optimization and ad-
ditional constraints which re�ect various realistic hardware
architectures. Our expanded benchmarks include: (1) Initial-
ization of qubit state locations, rather than starting from de-
fault locations and (2) crosstalk constraints, placing addi-
tional restrictions on gate operations.

Finally, we consider an expanded set of temporal plan-
ners for a more complete evaluation of temporal planning
for QCC. Our extensive empirical evaluation shows that the
additional constraints lead to a more diverse set of tempo-
ral planning benchmarks with different characteristics. The
tested temporal planners, which utilize different planning
frameworks, perform differently across problem variations
belonging to the same problem class.

While there has been active development of software li-
braries to synthesize and compile quantum circuits from
algorithm speci�cations (Wecker and Svore 2014; Smith,

Figure 1:Left: A schematic for the 8-qubit chip design in-
spired by the prototype described in (Sete, Zeng, and Rigetti
2016) and used in (Venturelli et al. 2017) and in our nu-
merical experiments. Available 2-qubit gates are represented
by colored edges (swap capability symbolized by double ar-
rows). Each color is associated to a distinct duration of the
P-S gate (three for blue and four for red, in normalized clock
cycles). Additionally, 1-qubitmixing gates of unit duration
are present at each qubit (black dot). The yellow crosses on
qubits 3 and 4 visualize the disabled qubits during the action
of a gate between qubits 1 and 2 whencrosstalkconstraints
are considered.Right: Dashed boxes indicate the 2 different
chip sizes used in our empirical evaluation (see Sec. 6).

Curtis, and Zeng 2016; Steiger, H¤aner, and Troyer 2016;
Devitt 2016; Barends et al. 2016), few approaches have been
explored for compiling idealized quantum circuits to realis-
tic quantum hardware with a speci�c focus on swap gate
insertions (Beals et al. 2013; Brierly 2015; Bremner, Mon-
tanaro, and Shepherd. 2016), targeting algorithms that could
be run in the near-term (Guerreschi and Park 2016).

The rest of our paper is structured as follows: in Section 2,
we provide some background on QCC and the existing ap-
proach to solving QCC using domain-independent tempo-
ral planners. Next, Section 3 discusses our approach in us-
ing CP as a stand-alone solver for QCC. Section 4 discusses
planning horizon and task quantities. Section 5 describes our
novel planning-CP hybrid approach. Section 6 details our
empirical evaluation results. We end the paper with Section
7 our conclusion, and potential future work.

2 Quantum Circuit Compilation
General quantum algorithms are often described in an ideal-
ized architecture in which a gate acts on any subset of avail-
able qubits. However, in an actual superconducting qubit
architecture, such as the ones manufactured by IBM (IBM
2017), Rigetti (Reagor et al. 2017), Google (Neill et al.
2017) and UC Berkeley (Ramasesh et al. 2017), physical
constraints impose restrictions on pairs of qubits that support
gate interactions. Qubits in these quantum processors can be
thought of as nodes in a planar graph, with 2-qubit quantum
gates associated to edges and single qubit quantum gates as-
sociated with nodes. In Fig. 1 we present amodel chipthat is
used in our benchmarks. Following the most common choice
for benchmarks in the literature, themodel quantum algo-
rithmused is a variant of the �Quantum Alternating Operator

Ansatz� (Had�eld et al. 2017) (also known as �Quantum Ap-
proximate Optimization Algorithm� (QAOA) (Farhi, Gold-
stone, and Gutmann. 2014)) applied to theN P -Hard prob-
lem of Max-Cut. As described in (Venturelli et al. 2017) this
algorithm is speci�ed by a single type of 2-qubit gate, the
phase separation(p-s) gate, which needs to be applied to a
speci�c set of quantum variables depending on the problem
instance. An example of problem instance can be found in
Fig. 2-a where the edges of the graph indicate the required p-
s gates. In the model chip, gate colors (red or blue) indicate
different p-s gate durations in terms of clock cycles. A se-
quence of swap gates moves the information content (qubit
states) of two distant qubits to a location where a desired p-s
gate can be applied. Swap gates may be available only on
a subset of edges in the hardware graph and swap duration
may depend on the edge, however, in our benchmarks we
assume swap gates are available on each edge with constant
duration equal to 2 clock cycles.

Our benchmark algorithm works by repeating the same
circuit P times, interleaving each run by amixingphase. In
the mixing phase, a set of single qubit mixing gates are ap-
plied. These gates are located at each qubit. All p-s gates that
involve a speci�c qubit state must be carried out before the
mixing on that state can be applied and the second p-s stage
initiated. As in previous work, we considerP 2 f 1; 2g.

2.1 De�nitions
We let the set of qubits in the quantum circuit be represented
asN := f n1; n2; : : : ; n� g and the set of qubit states be rep-
resented asQ := f q1; q2; : : : ; q� g. Each qubit,ni 2 N ,
starts in its corresponding (by index) state,qj 2 Q. The ini-
tial con�guration of the circuit has qubit statej mapped to
qubit i , for i = j (Note: in the problems studied,� = �).
An integer valueT is the scheduling horizon. Determining
an appropriateT is discussed in Section 4.1.

We letS represent the set of swap gates in the circuit ar-
chitecture,S := f s1; s2; : : : ; s
 g, where each gate,sk 2 S,
involves a qubit pair,hni ; nj i . Similarly, we letP represent
the set of p-s gates,P := f p1; p2; : : : ; p� g, where each of
these gates,p‘ 2 P involves a pair of qubits. We de�ne
the set of swap and p-s gates that involve qubitni 2 N
as S(i) and P (i), respectively. Swap and p-s gates have
distinct durations for their activation (� swap and� ‘ , respec-
tively), with p-s gate duration depending on the class of the
gate, visualized as different colors in Figure 1 (thus, duration
� ‘ 2 f � red ; � blue g; 8p‘ 2 P). When the problem involves
multiple p-s stages, mixing gates are available at each node
in the architecture with a duration� mix .

The set of problem goals, de�ned asG :=
f g1; g2; : : : ; g� g, encode the speci�c qubit state pairs
that need p-s gates applied to them. Each goal,go 2 G,
identi�es a pair of qubit states,hqi ; qj i . To achieve the goal,
these quantum states must be adjacent in the architecture
graph (in the case of the studied architecture, all adjacent
qubits have a connecting a p-s gate). The p-s gate used for
goal activation is a decision variable.

Example:Given the 8-qubit architecture in Figure 1 with
each qubitni 2 N initially associated to the qubit state

qj 2 Q (with i = j), let us assume that the idealized cir-
cuit requires the application of a p-s gate to the statesq2 and
q4. The sequence of gates to achieve the goal are:

f SWAPn 4 ;n 1 ; SWAPn 2 ;n 3 g ! SWAPn 1 ;n 2 ! PSred
n 2 ;n 3

The sequence takes2� swap + � red clock cycles where� ?
represents the duration of the?-gate.

2.2 Temporal Planning for QCC
The QCC problem can be modeled as a temporal planning
problem, utilizing the standard planning domain de�nition
language (PDDL) (Venturelli et al. 2017), as follows:
� Predicates are used to model the location of each qubit

state and if the pre-de�ned goal requirement on a pair of
qubit states has been achieved or not.

� The swap and p-s gates are modeled as temporal actions
with: (1) conditions representing constraints on whether
or not the involved qubit states residing on connecting
qubit pairs and if the required gates have not been already
executed; and (2) effects representing the new locations
of the qubit states and that the desired p-s goals have been
achieved.

� The standard objective function of minimizing the total
plan makespan matches well with the desired goal of min-
imizing the circuit duration in the QCC problems studied.

While the basic mapping is outlined above, there are addi-
tional constraints and actions involved with different vari-
ations of the QCC problem (e.g., multiple p-s stages), we
refer to (Venturelli et al. 2017) for the details.

2.3 Extensions
In this paper, we target QCC problems beyond the one ad-
dressed in (Venturelli et al. 2017). With the addition of
qubit state initialization(QCC-I) andcrosstalks(QCC-X)
problem variations, we allow the implemented techniques to
solve a uni�ed problem that originally required two inde-
pendent steps and handle a type of constraint that is often
present in existing hardware.

Qubit State Initialization (QCC-I) In the previously
studied QCC problem qubit states are assigned their ini-
tial locations on the chip before problem solving (e.g., qubit
stateqj 2 Q is initially assigned to qubitni 2 N). Here we
both assign the initial locations of the qubit states and �nd
the sequence of gates to achieve the goals. Modeling this
initialization step in PDDL is rather straight forward.
� In the initial state: all qubits are �empty� and all qubit

state locations are undetermined.
� Action ai;j initializes the location of qubit stateqj 2 Q

on qubitni 2 N if: (1) qj has not been initialized and (2)
ni is still empty.

� Action ainit f inish �nalizes the initialization process with
the condition that all qubit states have been initialized.
After this action �nishes executing, then all actions of the
original QCC problem can start.

Crosstalk (QCC-X) In the existing problem de�nition,
any given qubit can be involved with a single gate op-
eration at any given time. For certain hardware architec-
tures, crosstalk constraints further restrict qubit involve-
ment. We represent this family of constraints inspired by
the technology implemented by the devices manufactured
by Google (Boxio 2016).1 Speci�cally, when a given qubit
ni 2 N is involved in a gate operation, any qubit adjacent to
it in the architecture is prevented from engaging in any gate
operation. For example, if a 2-qubit gate operation is carried
out betweenhn1; n2i in Figure 1, then no gate operation in-
volving n3 (connected ton2) or n4 (connected ton1) can be
started until thehn1; n2i operation is complete.

To model crosstalk constraints in PDDL, we introduce:
� A new predicatecrosstalk (ni) to indicate if ni is cur-

rently disabled by a gate operating on an adjacent qubit.
� An action representing a gate operation on a

pair of adjacent qubitshni ; nj i will: (1) require
(not (crosstalk (ni)) ^ (not (crosstalk (nj))) as action
pre-conditions, and (2) for every qubitnk that is con-
nected to eitherni or nj , crosstalk (nj) is part of the
effect list of the start of the action.

3 Constraint Programming for Quantum
Circuit Compilation

Operations research (OR) investigates solving many combi-
natorial optimization problems closely related to planning.
Various techniques developed in OR are also utilized in ex-
isting planners as off-the-self solvers (Kautz and Selman
1999; Do and Kambhampati 2000; van den Briel and Kamb-
hampati 2005), routines to solve key sub-problems (Benton,
Coles, and Coles 2012) in decomposed approaches, mod-
els to calculate heuristic values (Pommerening et al. 2015;
Piacentini et al. 2018), or as inference techniques cus-
tomized for planning (Vidal and Geffner 2006).

Given their performance, we investigate the use of OR
methods, namelyconstraint programming(CP), as an al-
ternative and complementary approach to temporal plan-
ning for QCC problems. Preliminary efforts to develop a
mixed-integer programming (MIP) formulation yielded less
promising results and we elected not to pursue this MIP
models for this work. In this section, we detail a CP model
for the QCC problem.

3.1 Decision Variables
As is common in CP, our formulation utilizes continuous,
integer, and optional/mandatory interval decision variables.
An optional interval variable,var , is a rich variable type
whose possible values are de�ned over a convex interval:
var := f?g [f [s; e)js; e 2 Z; s � eg, where the variable
takes on the value? if it is not present in the solution2 and

1Similar constraints are present in the devices by IBM and by
UC Berkeley. These constraints could model the loss of circuit �-
delity due to spurious uncompensated electromagnetic effects or to
uncalibrated interactions. However, parallel execution of adjacent
circuitry can also be prevented by design.

2Mandatory interval variables must be present in the solution.

s and e represent the start and end values of the interval.
Such interval variables are a natural way to model swap, p-
s, and mixing gate tasks, as they have duration and need to
be assigned a start time. The variable Pres(var) takes on a
value of 1 if the interval variablevar is present in the solu-
tion. Constraints are only active over present interval vari-
ables. If present, Start(var), End(var), and Length(var) re-
turn the integer start and end times, as well as the length, of
the interval variablevar . Additionally, we can assign inter-
val variables tosequenceswhich model relationships such as
Pre(var), which returns the interval variable precedingvar
in a candidate solution. A key limitation to CP technology,
as opposed to temporal planning, is that it can only reason
over variables in the model. For QCC problems, the number
of times a particular swap or p-s gate will be used in a solu-
tion plan is unknowna priori, and thus we must de�ne upper
bounds for these values and allocate these quantities of tasks
(instantiated as optional interval variables) to the model. We
de�ne bounds on swaps,Uswap , and p-s activations,Ups , for
each gate in the architecture in Section 4.2.

We model the problem in CP with anevent-basedformu-
lation, tracking qubit state after each swap, p-s, or mixing
gate task that involves that particular qubit. We de�ne the
set of all events potentially involving qubitni 2 N asE i ,
including a dummy event for qubit state initialization.

The decision variables with associated domains (permis-
sible values) used in our formulation are:
� Cmax := (continuous) Makespan of the generated plan

and objective function value of the formulation, with pos-
sible values in0 � Cmax � T .

� x i;j := (integer) State of qubitni 2 N after task
j 2 E i . Each of these variables takes on a value
in the setQ of available qubit states, namelyx i;j 2
f 1; 2; : : : ; jQjg; 8j 2 E i ; ni 2 N .

� yk;m := (optional interval) Swap taskm for swap gate
sk 2 S. If present, has a start time Start(yk;m) 2 [0; T]
and duration Length(yk;m) = � swap . The set of optional
swap tasks available for swap gatesk 2 S is de�ned as:
�yk := f yk; 1; yk; 2; : : : ; yk; Uswap g.

� z‘;n := (optional interval) P-s taskn for p-s gate
p‘ 2 P . If present, has start time Start(z‘;n) 2 [0; T] and
duration Length(z‘;n) = � ps , where� ps 2 f � red ; � blue g,
as per the architecture. The set of optional p-s tasks
available for p-s gatep‘ 2 P is de�ned as: �z‘ :=
f z‘; 1; z‘; 2; : : : ; z‘; Ups g.

� Zo := (interval) Mandatory goal p-s task for goalgo 2
G. Start time Start(Zo) 2 [0; T], duration Length(Zo)
2 f � red ; � blue g and end time End(Zo). The makespan ob-
jective is the time of the latest completion time of these
variables, namely:Cmax := max go 2 G

�
End(Zo)

�
.

In problems with two p-s stages, we include the following
additional decision variables for mix gates:
� ! i;j := (optional interval) Task for mixing qubit state

qj 2 Q at qubit ni 2 N . If present, has start time
Start(! i;j) 2 [0; T] with duration Length(! i;j) =� mix . The
set of optional mixing tasks available for qubitni 2 N is
de�ned as:�! i := f ! i; 1; ! i; 2; : : : ; ! i;� g.

�
 j := (interval) Mandatory mixing task for qubit state
qj 2 Q. Has start time Start(
 j) 2 [0; T] duration
Length(
 j) = � mix , and end time, End(
 j), representing
when the mixing of stateqj 2 Q is complete.

3.2 Formulation Objective and Constraints
With the problem parameters, decision variables, and asso-
ciated domains de�ned, we detail our event-based CP for-
mulation in Eqns. (1 - 12). Constraints (1 - 9) are required
for one and two-stage p-s, while Constraints (10 - 12) are
only required for two-stage p-s problems.

Objective (1) represents the problem objective which is to
minimize the makespan,Cmax , of the circuit compilation.
The secondary objective, reduced in weight by a suf�ciently
small value� , minimizes the number of swap tasks.3 The ad-
dition of this component was found to improve solver per-
formance while remaining a reasonable objective for QCC
problems. Constraint (2) initializes the qubit states to their
required initial values and Constraint (3) requires that solu-
tion Cmax be greater than the end time all goal variables.

We use a number ofglobal constraints(van Hoeve and
Katriel 2006). These constraints are de�ned over a set of
variables and encapsulate frequently recurring combinato-
rial substructure in a way that improves the branch-and-infer
search implemented by CP solvers. Constraint (4) uses the
NoOverlapglobal constraint (Baptiste, Le Pape, and Nui-
jten 2012) to perform incomplete, ef�cient domain �lter-
ing on the start times of the interval variables. This mod-
eling treats each qubit,ni 2 N , as a unary capacity re-
source, and ensures that swap, p-s, and mix gates are acti-
vated in such a way that two gates involving the same qubit
are never active at the same time. The setE i , consisting of
all tasks potentially involving qubitni 2 N , is de�ned as:
E i := f _xg [f �yk : sk 2 S(i)g [f �z‘ : p‘ 2 P (i)g [�! i ,
where _x is a dummy task.

Constraint (5) makes use of theAlternativeglobal con-
straint (Laborie 2009), which links interval variables to a set
of optional interval variables, enforcing that only one vari-
able from the optional set can be present and the start time
must coincide with the mandatory variable. We use this con-
straint to maintain the relationship between the goal vari-
ables,Zo, and the optional p-s variables,z‘;n . For each p-s
gate, thez‘;n tasks are ordered such that they coincide with
a single goal, and thusjGj = j �z‘ j; 8p‘ 2 P . Each goal acti-
vates a single p-s gate task across the set of p-s gates.

Constraint (6) implements qubit state updates when a
swap interval variable is present, swapping the states of the
qubits involved in the corresponding physical swap gate.
The termprei (yk;m) returns the task previous to swap task
yk;m in the sequence for qubitni 2 N , allowing the mod-
eling of qubit state swap between the qubit pair,hi; j i , in-
volved in gatesk 2 S. Constraint (7) models a similar re-
lationship for p-s gate tasks. We note that while swap tasks
result in an exchange of states between qubitsni and nj ,
after a p-s task qubit states remain unchanged.

3This value is subtracted from the objective when comparing to
temporal planning approaches for consistency.

Minimize:

Cmax + � �
X

sk 2 S

X
yk;m 2 �yk

Pres(yk;m) (1)

Subject to:
x i; 0 = i; 8i 2 f 1; 2; : : : ; � g (2)
Cmax � End(Zo); 8go 2 G (3)
NoOverlap(E i); 8ni 2 N (4)
Alternative(Zo; [z1;o ; : : : ; z�;o]); 8go 2 G (5)
Pres(yk;m) ! (x i;y k;m = x j;pre j (yk;m))

^ (x j;y k;m = x i;pre i (yk;m));
8yk;m 2 �yk ; hi; j i 2 sk ; sk 2 S (6)

Pres(z‘;n) ! (x i;z ‘;n = x i;pre i (z‘;n))
^ (x j;z ‘;n = x j;pre j (z‘;n));
8z‘;n 2 �z‘ ; hi; j i 2 p‘ ; p‘ 2 P (7)

Pres(z‘;n) ! (x i;pre i (z‘;n) = g‘; 1 ^ x j;pre j (z‘;n) = g‘; 2)
_ (x i;pre i (z‘;n) = g‘; 2 ^ x j;pre j (z‘;n) = g‘; 1);
8z‘;n 2 �z‘ ; hi; j i 2 p‘ ; p‘ 2 P (8)

Pres(yk;m) � Pres(yk;m +1);
8yk;m 2 �yk n yk; Uswap ; sk 2 S (9)

Alternative(
 j ; [! 1;j ; : : : ; ! �;j]); 8qj 2 Q (10)
Start(
 j) � End(Zo); 8go 2 G(j); qj 2 Q (11)
End(
 j) � Start(Zo); 8go 2 G0(j); qj 2 Q (12)

Constraint (8) ensures that if a particular p-s gate task is
present,z‘;n , the states of the qubits involved, prior to the
application of the p-s gate, match the speci�c goal that the
p-s gate is matched with (goals being ordered to match the
optional p-s gate tasks at any physical p-s gate location). In
this constraint, the termg‘; 1 represents the �rst qubit state
required by goalg‘ 2 G, andg‘; 2 the second.

To help remove some of the symmetries in the model,
Constraint (9) speci�es that homogeneous optional swap
tasks must be used lexicographically.

For problems that have two stages of phase separation,
a mixing gate must be applied to each qubit state after all
the goals that utilize that state are achieved, and then the
goals must be repeated. To achieve this, we introduce a sec-
ond goal set,G0 := f g� +1 ; g� +2 ; : : : ; g2� � g, which duplicates
the �rst. We let the setsG(j) and G0(j) denote the goals
from G andG0, respectively, that involve qubit stateqj 2 Q.
Constraint (10) ensures that only one of the optional mix-
ing tasks is used for each mixed qubit state and Constraints
(11) and (12) ensure that the mixing tasks separate the two
p-s goal sets. Additionally, goal requirements are amended
to include the duplicated goal set,G0.

3.3 Qubit Initializations and Crosstalks

The QCC problem extensions introduced in Section 2 re-
quire minor alterations to the CP model.

QCC-I In the baseline and crosstalk problem variants,
Constraint (2) is applied unchanged. However, in the qubit
initializations problem variant this constraint is removed and
replaced with the following:

AllDifferent(x1;0; x2;0; : : : ; x �; 0) (13)

The removal of Constraint (2) allows the solver to select ini-
tial values for qubit states, and the addition of Constraint
(13) enforces that the initial states on all the qubits be differ-
ent, ensuring that all qubit states are present on the chip.

QCC-X In the crosstalk variant of the problem, the qubits
that can simultaneously participate in gate activations are
further constrained. Constraint (4) is adjusted such that the
setsS(i) and P (i) for a given qubitni 2 N include the
gates that involve adjacent qubits toni as well.

4 Setting Bounds
4.1 Planning Horizon
Our CP formulation can be implemented using a horizon set
to in�nity, however, it was observed that smaller values im-
prove performance.

Let be the length of the side of the chip (= 3 for 8-
qubits, and = 5 for 21-qubits),� max

p� s = max(� red ; � blue)
be the maximum possible p-s gate duration, and� = (2 �
) � 3 be the maximum number of swaps required to bring
any two qubit states to a pair of adjacent qubits.
Lemma 1. For P = 1 problems,T = jGj� (� �� swap + � max

p� s)
is an upper bound on the optimal plan makespan.

Proof. Imagine that we are only able to perform asingle
task at a time. There are two components to achieving any
goal: i) moving the required qubit states to adjacent qubits,
and ii) applying a p-s gate task.

For a single goal, the worst case scenario would have the
required states located on the opposite sides of the archi-
tecture (e.g., located onn1 andn8 in Figure 1), requiring a
minimum of � swaps to place the required states adjacent
to each other. Then, we must apply a p-s gate, which in the
worst case will take a duration of� max

p� s . We can perform
all tasks forjGj goals in sequence, leading to a plan with
makespan no worse than:T = jGj � (� � � swap + � max

p� s).

We use thisT value as the planning horizon parameter in
all of our CP experiments for single p-s stage problems.4

4.2 Swap and P-S Gate Tasks
For the scheduling formulation, we determine the number
of activation tasks to be allocated per physical swap gate,
Uswap . If we consider achieving each goal sequentially, we
could potentially have to move a qubit state through the en-
tire architecture to become adjacent to the other qubit state.
In this case, each swap gate is used once for each goal, yield-
ing Uswap = jGj. Note that, although this value is observed
to perform well empirically, the circuit can work towards
goals in parallel, leading (potentially) to optimal solutions

4A trivial extension of this proof is used to yield a scheduling
horizon bound applicable toP = 2 .

