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Abstract 11 

Global-scale surface soil moisture products are currently available from multiple remote sensing platforms. 12 

Footprint-scale assessments of these products are generally restricted to limited number of densely-13 

instrumented validation sites. However, by taking active and passive soil moisture products together with a 14 

third independent soil moisture estimates via land surface modeling, triple collocation (TC) can be applied to 15 

estimate the correlation metric of satellite soil moisture products (versus an unknown ground truth) over a 16 

quasi-global domain. Here, an assessment of Soil Moisture Active Passive (SMAP), Soil Moisture Ocean 17 

Salinity (SMOS) and Advanced SCATterometer (ASCAT) surface soil moisture retrievals via TC is presented. 18 

Considering the potential violation of TC error assumptions, the impact of active-passive and satellite-model 19 

error cross correlations on the TC-derived inter-comparison results is examined at in situ sites using quadruple 20 

collocation analysis. In addition, confidence intervals for the TC-estimated correlation metric are constructed 21 

from moving-block bootstrap sampling designed to preserve the temporal persistence of the original (unevenly-22 

sampled) soil moisture time-series. This study is the first to apply TC to obtain a robust global-scale cross-23 
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of our knowledge, this study is the first attempt to apply TC to obtain the footprint-scale 71 

correlation metric for SMAP observations at quasi-global scale, and compare it directly with soil 72 

moisture retrievals from SMOS and ASCAT.  73 

 74 

Our basic strategy for applying TC is to employ soil moisture data triplets comprising a passive 75 

microwave product (SMAP or SMOS), an active remote sensing product (ASCAT), and a land 76 

surface model product. TC is based on a fundamental assumption that each of these products 77 

contain uncorrelated errors. However, recent works have identified non-negligible error 78 

correlation in soil moisture products acquired from active and passive microwave sources 79 

(Gruber et al. 2016b; Pierdicca et al. 2017). This suggests that it is necessary to examine the 80 

impact of violating this assumption on SMAP-ASCAT and SMOS-ASCAT-based TC analyses. 81 

Therefore, we also apply the least-squares quadruple collocation solution (QC, Pierdicca et al. 82 

2015) to estimate the error cross-correlations at over 200 sparse ground observation sites to 83 

further evaluate the robustness of our global TC analysis strategy.  84 

This paper is organized as follows. Section 2 reviews the TC and quadruple collocation (QC) 85 

methodologies and data-processing procedures as well as the use of moving-block bootstrap re-86 

sampling to obtain confidence intervals for TC-derived R. Section 3 describes the remote 87 

sensing, land surface modeling and ground observation datasets used in the analysis. Section 4 88 

presents the QC results at sparse network sites and discusses the sensitivity of the TC analysis to 89 

both non-zero error cross-correlation between active and passive satellite soil moisture products 90 

and our choice of a particular land surface model dataset. Results and discussions of global 91 
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To ensure consistency with the assumption listed above, seasonal signals are commonly removed 112 

from the raw time-series of each product prior to the application of TC (Gruber et al. 2016a; Dorigo 113 

et al. 2010; Su and Ryu, 2015). Here, anomaly time series are generated by removing the average 114 

value of a 30-day moving window centered upon the data point being treated (i.e. from day -14 to 115 

day +15). Given the potential temporally sparse nature of satellite retrievals, a minimum of 3 116 

observations is required in each of the first and second halves of the 30-day window, in addition 117 

to the data point being treated itself. This particular anomaly definition, versus the alternative 118 

definition of deviations from a long-term seasonal climatology, has less stringent requirements 119 

regarding the length of datasets, which is usually the limiting factor in the application of TC in 120 

satellite products. While the removal of low-frequency variability has been shown to improve the 121 

robustness of TC results (Chen et al. 2017), it renders our particular ETC approach insensitive to 122 

(potentially-important) error in low-frequency and/or seasonal soil moisture dynamics. The 123 

implications of this will be discussed below.   124 

ETC-based estimates of correlation are considered viable when: 1) the collocated triple time series 125 

is comprised of at least 50 data points; 2) positive correlation is found between each of the three 126 

input anomaly time-series, and 3) ETC correlation outputs are real and positive for each of the 127 

three datasets. All other ETC correlation estimates are masked. The positive correlation 128 

requirement between input datasets (#2 above) is necessary to avoid ambiguity since ETC is unable 129 

to resolve the sign of the output R values (McColl 2014). This limitation results in the exclusion 130 

of pixels in certain regions where active and passive soil moisture retrievals are negatively 131 

correlated (see additional discussion in Section 5).   132 

2.2 Estimation of error cross-correlation: Quadruple collocation  133 
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and ASCAT (averaged from SMAP- and SMOS-based TC) retrievals over common pixels are 484 

0.76, 0.66 and 0.63, respectively. 485 

 486 

 487 

Figure 9. Comparison of TC-estimated correlation coefficients between the satellite retrieval products. 488 

Color shade indicates the product that obtains higher R in more than 95% of the bootstrap re-sampling 489 
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geographic regions where both passive satellites excel is generally consistent with the high level 565 

of correlation between SMAP and SMOS found earlier by Burgin et al. (2017). ASCAT 566 

generally performs better than SMAP and SMOS across high-latitude areas of Eastern Asia, parts 567 

of South America (mainly Argentina) and Southwestern Australia. As in Fig. 9, SMOS has 568 

higher R than SMAP in the Western United States, Central Asia and most inland pixels of 569 

Eastern Australia. Overall, SMAP ranks highest in 52% of the pixels with viable TC results (see 570 

Section 2.1) whereas SMOS and ASCAT each does in 24% of these pixels.  571 

 572 

6. Summary 573 

In this analysis, a global assessment and comparison of SMAP (L2 passive), SMOS (L3) and 574 

ASCAT (L2) surface soil moisture products is performed based on the correlation metric (R) 575 

obtained via triple collocation (TC). In order to produce robust TC results, R is estimated 576 

following removal of low-frequency variability in the soil moisture time series and therefore 577 

reflects the R of soil moisture anomalies relative to a 30-day moving temporal average. Given 578 

that low-frequency error sources have been previously identified in certain remotely-sensed soil 579 

moisture products (Wagner et al., 2014), this focus on solely high-frequency noise represents a 580 

limitation in our approach. Nevertheless, sensitivity experiments suggest that our global TC 581 

results are relatively insensitive to changing the size of the moving window from 30 to 60 days 582 

(not shown).  583 

In addition, when comparing satellite products, it is critical to account for the sampling 584 

uncertainties due to sparse temporal availabilities or suboptimal retrieval conditions. To this end, 585 

a moving-block bootstrap re-sampling approach, with emphasis on preserving the temporal 586 
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properties of the original soil moisture time series, was applied at each grid pixel to construct the 587 

confidence interval for TC estimates. The re-sampled distribution of correlation estimates is then 588 

used to obtain the significance of TC-based R differences between SMAP, SMOS and ASCAT 589 

soil moisture retrieval products.   590 

Concern about the violation of TC assumption due to error cross-correlations between active-591 

passive observations and between satellite and model products is addressed via a quadruple 592 

collocation (QC) analysis conducted within available sparse network sites (Fig. 2). Slight 593 

positive error cross-correlation is found to exist between ASCAT and both SMAP and SMOS 594 

which suggests that TC-estimated R for the three satellite-based products may be positively 595 

biased. However, since this bias is small and approximately equal for all three products, the 596 

relative evaluation against each other changes only slightly from QC to TC. Results also indicate 597 

limited impact associated with potential satellite-model error cross-correlations. Recent findings 598 

by Pierdicca et al. (2017) using a novel extended QC algorithm and 15 months of satellite and 599 

model data reveals weak SMAP-SMOS ECC that is lower than the SMAP-ASCAT ECC found. 600 

Such findings suggest the  further potential of  using SMAP and SMOS together in TC in future 601 

analyses. Finally, the sensitivity of SMOS TC results to the specification of the DQX threshold is 602 

shown to be low. 603 

To the best of our knowledge, this study is the first to present a global-scale triple collocation 604 

analysis that compares the footprint-scale correlation metric of SMAP with SMOS and ASCAT 605 

soil moisture products. Results suggest that, out of these three products, SMAP has the highest 606 

global average R (0.76, SMOS: 0.66, ASCAT: 0.63) and is the superior product for the majority  607 

(52%) of global land pixels with a viable TC result. This finding is consistent with several recent 608 

validation studies (e.g. Kumar et al. 2017; Montzka et al. 2017; Pierdicca et al. 2017; Kim et al. 609 
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2018). For example, using information theory-based metrics, SMAP has also been found to 610 

provide higher information content than other microwave satellite soil moisture products (Kumar 611 

et al. 2017). Likewise, in a validation study applying both standard validation methods and triple 612 

collocation at footprint-scale soil moisture measurements from the Cosmic Ray Neutron Probes 613 

(CRNP, including some of the COSMOS stations used here) across five continents, SMAP 614 

outperformed other satellite products including AMSR2, SMOS and ASCAT (Montzka et al. 615 

2017). Nevertheless, each of the three satellite retrieval products (SMAP, SMOS and ASCAT) 616 

were found to be superior (to the other two) in specific global land regions. Therefore, the global 617 

inter-comparison maps in Figures 9 and 10 provide useful information for regional-scale 618 

applications such as the choice of dataset for assimilation into rainfall-runoff models.   619 

In closing, it should be noted that all products considered here are subject to frequent re-620 

processing and algorithm improvements. For example, a new global daily SMOS SM product -- 621 

the SMOS-INRA-CESBIO (SMOS-IC) product was recently released and shown to yield 622 

generally higher correlations versus ground observation versus the v300 SMOS Level 3 soil 623 

moisture product considered here (Fernandez-Moran et al., 2017). Comparable enhanced SMAP 624 

soil moisture products are likely to arise in the foreseeable future. Therefore, the cross evaluation 625 

efforts described here are, in reality, an on-going effort requiring updating as improved products 626 

are released. 627 
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SMOS); b) [SMAP-ASCAT-ECMWF] (for SMAP and ASCAT); and c) [SMOS-ASCAT-ECMWF] (for 862 

SMOS and ASCAT).  863 

Figure 10. The satellite product (SMAP, SMOS or ASCAT) with the highest TC-based correlation 864 

coefficient (�4
%, bootstrap mean). 865 

































