


25 Abstract 
26 The vertical distribution of aerosols and their capability of serving as cloud condensation nuclei 

27 (CCN) are important for improving our understanding of aerosol indirect effects. Although 

28 ground-based and airborne CCN measurements have been made, they are generally scarce, 

29 especially at cloud base where it is needed most. We have developed an algorithm for profiling 

30 CCN number concentrations using backscatter coefficients at 355, 532, and 1064 nm and 

31 extinction coefficients at 355 and 532 nm from multi-wavelength lidar systems. The algorithm 

32 considers three distinct types of aerosols (urban industrial, biomass burning, and dust) with 

33 bimodal size distributions. The algorithm uses look-up tables, which were developed based on the 

34 ranges of aerosol size distributions obtained from the Aerosol Robotic Network, to efficiently find 

35 optimal solutions. CCN number concentrations at five supersaturations (0.07–0.80%) are 

36 determined from the retrieved particle size distributions. Retrieval simulations were performed 

37 with different combinations of systematic and random errors in lidar-derived extinction and 

38 backscatter coefficients: systematic errors range from -20% to 20% and random errors are up to 

39 15%, which fall within the typical error ranges for most current lidar systems. The potential of this 

40 algorithm to retrieve CCN concentrations is further evaluated through comparisons with surface- 

41 based CCN measurements with near surface lidar retrievals. This retrieval algorithm would be 

42 valuable for aerosol-cloud interaction studies for which virtually none has employed CCN at cloud 

43 base because of the lack of such measurements. 



44 1. Introduction 

45 Atmospheric aerosol particles affect climate indirectly by acting as cloud condensation nuclei 

46 (CCN) [Carslaw et al., 2010; Paasonen et al., 2013]. CCN are those aerosol particles on which 

47 cloud droplets form when the supersaturation in a cloud is high enough for the particles to grow 

48 by water condensation until  they reach a  critical  radius, beyond which  condensational  growth 

49 continues  spontaneously  unless  the  supersaturation  decreases  rapidly  [Nenes  et  al.  2001b; 

50 Mamouri and Ansmann, 2016]. Anthropogenic emissions of aerosol particles are a major source 

51 of CCN, which influence cloud microphysical and radiative properties, and consequently climate 

52 change [Boucher et al., 2013]. Therefore, an accurate knowledge of the spatial distribution of 

53 aerosols and their capability of serving as CCN is fundamental to understanding aerosol indirect 

54 effects. As emphasized by Fan et al. [2016], obtaining concurrent measurements of aerosol 

55 properties and cloud microphysical and dynamic properties over a range of temporal and spatial 

56 scales is critical to advance our understanding of aerosol-cloud interactions. 

57 CCN can be measured in situ from the ground [Feingold and Grund, 1994; Roberts and Nenes, 

58 2005] and from aircraft [Rosenfeld et al., 2008; Li et al., 2015a, b], or inferred from satellite 

59 observations [Grandey and Stier, 2010; Gryspeerdt et al., 2014; Shinozuka et al., 2015; Rosenfeld 

60 et al., 2016]. Long-term monitoring of CCN properties at different observation sites has been 

61 chiefly made on the ground. Other than limited horizontal cover and many other issues 

62 [Paramonov et al., 2013], near-surface CCN properties could be significantly different from CCN 

63 properties near the cloud base due to vertical aerosol inhomogeneities, especially air pollution 

64 under stable atmospheric boundary conditions. Except for Rosenfeld et al. [2016], satellite-based 

65 CCN estimations mainly use aerosol optical depth as a proxy for aerosol loading to take advantage 

66 of its global coverage. It is still challenging and highly uncertain [Andreae, 2009; Liu and Li, 2014] 

67 with many other limitations such as a lower temporal resolution, cloud contamination, and aerosol 

68 swelling in the moist environment near clouds [Koren et al., 2007]. Airborne measurements can 

69 provide CCN measurements near cloud base, but are expensive to collect and are limited to a few 

70 field experiments [Feingold et al., 1998; Li et al., 2015a, b]. The capability of routinely measuring 

71 new CCN at cloud base to study aerosol-cloud-precipitation interactions effectively is still lacking 

72 [Burkart et al., 2011]. 



73 Vertically-resolved aerosol measurements offered by lidars provide the potential to measure 

74 CCN near cloud base. Feingold et al. [1998] developed an approach that used a combination of 

75 several remote sensing instruments, such as the Ka-band Doppler radar, the microwave radiometer, 

76 and the lidar, to derive the activation of CCN as a function of supersaturation level. However, this 

77 approach is based on the Junge power-law aerosol size distribution [Junge, 1952] that is only 

78 applicable for a clean troposphere and stratosphere. Ghan and Collins [2004] and Ghan et al. [2006] 

79 developed a technique to estimate CCN at cloud base based on the relationship between the aerosol 

80 extinction from lidar and CCN concentrations from near-surface measurements. However, their 

81 methods rely on the assumption that the aerosol composition and the shape of the aerosol size 

82 distribution at the surface are representative of the vertical column. Thus, their retrievals may have 

83 high uncertainties if the vertical profile of the shape of the aerosol size distribution differs 

84 markedly from that at the surface. In addition to their common use in profiling atmospheric 

85 temperature and humidity [Wandinger, 2005], multi-wavelength Raman lidars and High Spectral 

86 Resolution Lidars (HSRL) have been increasingly used in recent years to retrieve aerosol and CCN 

87 properties [Müller et al., 1999; Chemyakin et al., 2014; Mamouri and Ansmann, 2016]. This type 

88 of lidar allows for independent inferences of particle backscatter and extinction coefficients 

89 without the need for assuming any atmospheric parameters. Multi-wavelength Raman lidars can 

90 thus be used to quantify the main aerosol microphysical parameters and CCN properties with fewer 

91 a priori assumptions. The retrieval of aerosol microphysical properties is mainly based on the 

92 regularization algorithm [Müller et al., 1999, 2000, 2014; Veselovskii et al., 2002, 2004, 2013; 

93 Chemyakin et al., 2014, 2016]. Most of these early studies focused on aerosol size distribution and 

94 total aerosol concentration retrievals, and used the regularization technique, which lead to higher 

95 sensitivities with a 1-sigma value of 61.4–95.2% for different aerosol types [Pérez-Ramírez et al., 

96 2013]. This is because total aerosol concentration is very sensitive to aerosols with diameters 

97 smaller than 50 nm and lidar observations offer almost no constraint for them. To our knowledge, 

98 limited attempts have been made to quantify CCN concentrations from multi-wavelength lidar 

99 measurements. Feingold and Grund [1994] explored the potential of using multi-wavelength lidar 

100 measurements, but they only performed a simulation by using the theoretical wavelengths of 289, 

101 532,1064, 2020 and 11150 nm that some wavelengths are not available in real measurements. 

102 From the simulation, they only provided some relationships between multi-wavelength backscatter 

103 coefficients with the median radius and did not quantify any aerosol or CCN parameter. 































849��Table 4. Sensitivity of CCN retrievals to the bimodal fits at different supersaturation ratios (0.07%, 

850��0.10%, 0.20%, 0.40%, and 0.80%) from the 50 NAMMA aerosol size distributions. The CCN error 

851��is calculated as an absolute value. 
 

CCN Error (%) 

 0.07% 0.10% 0.20% 0.40% 0.80% 

Mean ± SD (%) 3.9 ± 2.8 3.1± 2.9 4.2 ± 3.3 2.2 ± 1.8 1.9 ± 1.6 

852��
��

853�� Table 5. Effects of the assumed ln�1c on the retrieved CCN errors at different supersaturation ratios 

854�� (0.07%, 0.10%, 0.20%, 0.40%, and 0.80%) for the three aerosol types. Error-free inputs were used. 
 

    CCN Error (%)   

  0.07% 0.10% 0.20% 0.40% 0.80% 
Mean 
± SD 
(%) 

Type 1 0.01 ± 0.7 -0.03 ± 1.2 -0.03 ± 3.8 0.02 ± 5.2 0.04 ± 5.5 
Type 2 0.8 ± 1.6 0.6 ± 1.0 -0.2 ± 1.2 -1.0 ± 3.0 -1.3 ± 3.9 
Type 3 -0.05 ± 2.7 0. 07 ± 3.3 0.3 ± 1.2 -0.2 ± 2.4 -0.8 ± 5.8 
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856�� Table 6. Range, mean, and standard deviations of retrieved CCN number concentration errors  at 

857�� different  supersaturation ratios (0.07%,  0.10%, 0.20%, 0.40%, and  0.80%).  Input  optical  data 

858�� included 15% random errors. 
 

  0.07% 0.10% 0.20% 0.40% 0.80% 

Type 
1 

Range (%) [-53.4, 47.2] [-49.4, 44.1] [-37.9, 26.8] [-30.0, 19.1] [-27.5, 18.2] 
Mean ± 
SD (%) -2.5 ± 18.7 -3.6 ±20.3 -7.0 ± 19.0 -7.6 ± 18.2 -7.3 ± 18.2 

Type 
2 

Range (%) [-61.7, 50.4] [-53.0, 51.6] [-55.1, 44.7] [-43.8, 21.9] [-31.2, 16.9] 
Mean ± 
SD (%) 

-5.4 ± 14.6 -1.0 ± 21.4 -3.3 ± 24.9 -7.7± 18.9 -6.5 ± 17.5 

Type 
3 

Range (%) [-82.7, 122.6] [-92.0, 103.4] [-79.4, 98.1] [-75.4, 103.5] [-64, 57.7] 
Mean ± 
SD (%) -20.0 ± 46.1 -19.4 ± 34.1 4.4 ± 27.5 10.2 ± 41.4 -0.8 ± 36.2 
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862�� Table 7. Mean and standard deviations of CCN retrieval errors at different supersaturation ratios 

863�� (0.07%, 0.10%, 0.20%, 0.40%, and 0.80%) with both systematic and random errors included. 
 

Systematic 
error (%) 0.07% 0.10% 0.20% 0.40% 0.80% 

  5 1.3 ± 14.7 -0.1 ± 16.3 -3.7 ± 15.9 -4.5 ± 16.3 -4.2 ± 16.6 
Type 

1 
Mean ± 
SD (%) 

10 -0.1 ± 18.3 -0.9 ± 20.2 -4.5 ± 18.9 -5.3 ± 18.1 -5.1 ± 18.0 
15 -3.3 ± 18.7 -4.1 ± 19.7 -7.5 ± 18.8 -8.2 ± 18.3 -8.0 ± 18.4 

  20 -6.9 ± 19.9 -6.9 ± 20.5 -8.9 ± 19.6 -9.3 ± 18.8 -9.0 ± 18.7 
  5 -0.8 ± 8.5 1.7 ± 15.2 -1.6 ± 17.2 -5.1 ± 14.8 -4.4 ± 15.7 
Type 

2 
Mean ± 
SD (%) 

10 -3.2 ± 11.8 -0.3 ± 19.1 -3.5 ± 21.6 -6.7 ± 16.6 -5.1 ± 16.6 
15 -7.6 ± 15.3 -2.7 ± 21.6 -3.8 ± 25.5 -7.6 ± 19.0 -6.3 ± 17.3 

  20 -10.3 ± 19.6 -5.5 ± 24.0 -6.3 ± 26.7 -10.0 ± 20.1 -8.5 ± 17.9 
  5 -12.7 ± 32.0 -10.0 ± 23.2 3.0 ± 15.3 4.4 ± 29.5 -1.1 ± 31.7 
Type 

3 
Mean ± 
SD (%) 

10 -16.2 ± 41.9 -15.2 ± 30.4 3.5 ± 21.8 6.8 ± 36.5 -1.9 ± 33.3 
15 -24.9 ± 48.3 -23.5 ± 36.0 6.1 ± 29.2 14.0 ± 43.9 -0.8 ± 36.8 

  20 -25.8 ± 53.1 -24.9 ± 38.8 6.0 ± 36.6 12.7 ± 45.4 -1.8 ± 37.0 
864��








































