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Stage 2: Dust trail formation



Stage 2: Dust trail formation
Escape velocity

Eccentric comets approach vesc at perihelion:

v2
peri = �

�
2

q
�

1

a

�

v2
esc = �

2

q



Stage 2: Dust trail formation
Radiation pressure

I Radiation pressure follows inverse square law

I Reduces central potential by � :

� =
Fr

Fg
= 5:7 � 10� 4 kg m� 2 � (Qpr =� s)

I E�ect is inversely proportional to size ... for large particles and \ideal" optics:
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Stage 2: Dust trail formation
Escape velocity and radiation pressure
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I For � � 1, there are no bound orbits

I For � < 1, vesc is reduced

I Comet’s velocity alone exceeds vesc for:
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Burns, Lamy, & Soter (1979)



Stage 2: Dust trail formation
Escape velocity and ejection velocity

I Meteoroids ejected in the direction of the comet’s motion get a boost; trailing
particles the opposite.

I For large particles:
�v = v0

p
�

I The value of � above which particles are unbound has an analytical solution. For
leading particles:
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A � atan2(vesc; v0)

� L = sin2 y

I A similar equation exists for trailing particles



Stage 2: Dust trail formation
Calculating � for small particles and real materials

� = 5:7 � 10� 4 kg m� 2 � (Qpr =� s)

�v ��Z Z/
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I Geometric optics: Qpr = 1

I \Ideal material": Qpr = 1 for � < 2� s, 0 otherwise

I Real materials: Calculate Qpr using Mie theory
(Python code available from Navarro & Werts, 2012)



Stage 2: Dust trail formation
Calculating � for small particles and real materials
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Ideal Material ( � = 1450 kg m � 3)
Tholin ( � = 1450 kg m � 3)

I I’ll compare the \ideal material"
case with one real material

I Tholins are a reddish brown polymer
found on icy bodies



Stage 2: Forming the Perseids
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Forbidden mass ranges for 10 major showers
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Forbidden mass ranges compared to in situ data
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Gr�un et al. (1985)



Stage 3: Meteoroid stream formation

I After 1 rev, unbound particles leave
the solar system

I After many revs, particles disperse
along orbit

I In addition to spread in e values,
there will be a range of distances at
which meteoroids cross ecliptic
plane, r




Stage 3: Meteoroid stream formation
Changes in nodal radius
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I Nodal radius will be a�ected by
radiation pressure



Stage 3: Meteoroid stream formation
Changes in nodal radius
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I Nodal radius will also be a�ected by
ejection velocity vector



Stage 3: Meteoroid stream formation
Changes in nodal radius
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I Nodal radius taking both ejection
velocity and radiation pressure into
account



Stage 4+: Continued evolution of meteoroid streams
and formation of the sporadic complex

I Poynting-Robertson drag and solar wind will continue to modify orbits over
thousands of years

I Collisions will grind larger particles into dust

I Planets will perturb orbits (some more than others)

I Continued exposure to Sun/vacuum may alter material properties of particles

I Eventually, meteoroid streams disperse into sporadic complex



Summary

I Meteoroid streams are formed when particles are carried o� a comet nucleus by
sublimating gases.
I We’ve extended v formula to handle arbitrary

particle size.

I Meteoroids may be on unbound orbits.
I Analytic solution for � limit for large particles
I Approximate solution for all particle sizes
I Ideal material: very small particles may remain in stream
I Tholins: small particles do not remain in stream
I Eccentric comets: excluded range can be large:

no Lyrids smaller than 4 � 10� 7 g

I Particles may remain in stream but intersect ecliptic
at modi�ed heliocentric distance.


