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ABSTRACT 

We present a general derivation of the frequency-domain volume integral equation (VIE) for the 

electric field inside a non-magnetic scattering object from the differential Maxwell equations, 

transmission boundary conditions, radiation condition at infinity, and locally-finite-energy 

condition. The derivation applies to an arbitrary spatially finite group of particles made of isotropic 

materials and embedded in a passive host medium, including those with edges, corners, and 

intersecting internal interfaces. This is a substantially more general type of scatterer than in all 

previous derivations. We explicitly treat the strong singularity of the integral kernel, but keep the 

entire discussion accessible to the applied scattering community. We also consider the known 

results on the existence and uniqueness of VIE solution and conjecture a general sufficient 

condition for that. Finally, we discuss an alternative way of deriving the VIE for an arbitrary object 

by means of a continuous transformation of the everywhere smooth refractive-index function into a 

discontinuous one. Overall, the paper examines and pushes forward the state-of-the-art 

understanding of various analytical aspects of the VIE. 
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shape of the scatterer. For homogeneous scatterers with sharp boundaries, there are certain 

indications that it spans a line from 1 to �Ý [15,23], as if there is a narrow smooth transition at the 

boundary. This is equivalent to Eq. (38) being not solvable for a negative real �Ý. Recently, Costabel 

et al. [24] proved (by considering only a non-absorbing host medium) that the essential spectrum 

consists only of points 1, �Ý, and �:� Ý 
 E � s�; �t�¤ . Markkanen [22] generalized this result to a particle with 

edges and vertices, adding intermediate values determined by the corresponding solid angles. 

However, the essential spectrum is not invariant to the point-wise multiplication [15], e.g., by 

�Ý�:���; 
 F � s, which is used to transition between several equivalent forms of the VIE, using the electric 

field, induced current, or potential as the main variable [25]. Moreover, the remainder of the line 

from 1 to �Ý contains eigenvalues corresponding to static (�G�5 � \ � r) shape resonances, which follows 

from physical reasoning that a positive real �Ý cannot support resonances [23]. For instance, a sphere 

much smaller than the wavelength has a resonance for � Ý 
 L 
 F� t, thus the corresponding �Û has an 

eigenvalue for �:� Ý 
 E � t�; �u�¤  [22]. More generally, Budko et al. [26] proved that the eigenvalues of the 

static scattering operator are contained in the convex hull of �Ý�:�9�7�;, denoted hereinafter as 

���‘�•�˜
k�Ý�:�9�7�;
o.10 To conclude, a practical solution of the VIE for a non-positive real �Ý is at least 

problematic, so one may prefer to avoid this region as a necessary condition for a well-behaved 

solution. 

Additional eigenvalues of �Û appear with increasing ���G�5��. We are not aware of any general 

bounds on these “resonant” eigenvalues for an arbitrary �Ý�:���;, apart from the uniqueness conditions 

discussed at the beginning of this section. Thus, we limit the discussion to a homogeneous scatterer 

with a relative permittivity �Ý. Then the integral operator �Û can be decomposed as follows 

[cf. Eq. (38)]: 

� Û 
 L � ä 
 E�:� Ý 
 F � s�;�á�:�G�5�;, (55)

where �á depends on the scatterer geometry and �G�5, but not on �Ý. In particular, the spectrum of �á�:�r�; 

belongs to the interval �>�r�á�s�?, as discussed above. Discrete eigenvalues for such a scatterer are 

directly related to so-called morphology-dependent resonances, which are mostly studied in the 

framework of the Lorenz–Mie theory for a single sphere [27]. The latter reduces to finding the poles 

of the Mie coefficients �=�á and �>�á, or, equivalently, the zeroes of their denominators; this can be 

summarized as 

�Ì�H �Ð �3�ã �ß�ß�:�I�á �T�; 
 L � r, (56)

where � T 
 L � G�5�= is the complex size parameter (� = 
 P � r is the fixed sphere radius) and �H numbers both 

the order and type of the Mie coefficients. Each function �ß�ß can be expressed in spherical Bessel 

                                                 
10 The original proof is for an everywhere smooth �Ý�:���;, but it can be extended to a piecewise smooth one. 
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� r 
 Q � ƒ� ”� ‰�:�Ý�6�; 
 O � è 
 E � ƒ� ”� ‰�:�Ý�5�;�á���Ý�6�� 
 P � r� ä (57)

Equation (57) is illustrated in Fig. 4, separately for �Ý�6 and �Ý, defining the allowed regions �<�6 and �<, 

respectivly. The negative real �Ý�6 are non-physical for the material properties, but the VIE causes no 

issues with that if the host medium is absorbing. 

 

Fig. 4. Conjectured sufficient conditions for the existence and uniqueness of the solution of the 

scattering problem in a passive host medium, described as blank areas (�<�6 and �<) in the complex 

plane for (a) �Ý�6 and (b) �Ý, respectively. The shaded areas contain different kinds of resonances (see 

text). The dashed lines in (a) and (b) extend from the origin through the values of �Ý�5 and its 

complex conjugate, respectively. 

For inhomogeneous scatterers, an additional condition is that the corresponding singular 

domains be not approached by �Ý or �Ý�6 infinitely close, i.e., 

�Ì�?�4 
 P � r� ã� �� Ê� � � Ð � 9�7� á � r 
 Q � ƒ� ”� ‰
 k� Ý�6�:���;
 o 
 O � è 
 E � ƒ� ”� ‰�:�Ý�5�; 
 F � ?�4 �ƒ�•�†���Ý�6�:���;��
 P � ?�4 (58)

or, equivalently, that the closure12 of the set of all values of �Ý�6�:���;, denoted �Ý�6�:�8�(�l�r�;
$
$
$
$
$
$
$
$
$
$, satisfy Eq. (57) 

pointwise, i.e., �Ý�6�:�8�(�l�r�;
$
$
$
$
$
$
$
$
$
$� ? � <�6. Consistent with the abovementioned results of Budko et al. [26], we 

also require that ���‘�•�˜
k�Ý�6�:�8�(�l�r�;
$
$
$
$
$
$
$
$
$
$
o not contain the origin, which is equivalent to �Ý�6�:�8�g�l�r�; being 

contained in the ring sector centered at the origin of the complex plane (a circular sector excluding 

the neighborhood of the origin) with an opening angle smaller than �è, or to 

�Ì�?�4 
 P � r� ã� �� Ê� �� á � ��ñ�Ð���g�l�r� á � +� ƒ� ”� ‰
 k� Ý�6�:���;
 o 
 F � ƒ� ”� ‰
 k� Ý�6�:���ñ�;
o�+ 
O �è 
F �?�4. (59)

Moreover, Eqs. (58) and (59) can be combined into the single condition 

���‘�•� 
̃k�Ý�6�:�8�(�l�r�;
$
$
$
$
$
$
$
$
$
$
 o � ? � <�6 � ; � �� ‘� •� 
̃k�Ý�:�9�7�3�5�(�l�r�;
$
$
$
$
$
$
$
$
$
$
$
$
$
$
 o � ? � <, (60)

where we have made use of the fact that in the first part �Ý�6�:�8�g�l�r�; may be augmented by �Ý�5,13 so that 

the equivalence follows from the rotation and scaling of the complex plane. We have also excluded 

all discontinuities from the image of �Ý, since the corresponding values �Ý�:�5�g�l�r�; are not relevant for 

the scattering problem and can be arbitrary. This is further discussed in Section IX. 

                                                 
12 The set plus all its limiting points (the boundary), further denoted by the overline (not to be confused with the 
dyadics). 
13 In other words, the condition is equivalent to the same but with �Ý�6�:�8�g�l�r�; � ë � <� Ý�5�=, since the line from �Ý�5 to any point in 
the blank area of Fig. 4(a) is always entirely within this area. 
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It cannot be overstressed that the above is only a conjecture. While it conforms to all the 

conclusions of the above-discussed literature, and somewhat generalizes them, we are not aware of 

any general proof. That should be the topic of future research. As an additional note, when the size 

and shape of a scatterer are fixed, only a set of discrete points and, possibly, a line in the shaded 

domain of ߝ (Fig. 4(b)) are actually singular. Thus, for most of the points in this domain the 

scattering problem has a unique solution. However, if the shape and size of the scatterer are 

arbitrarily varied, these discrete points will move through the whole singular domain and probably 

cover it entirely. Thus, an additional hypothesis is that Eq. (57) is also a necessary condition if the 

uniqueness and existence of solution are required for scatterers of all sizes and shapes. 

VIII. PARTICLES WITH EDGES AND VERTICES 

In this section we further generalize the particle geometry by allowing a finite number of edges and 

vertices, both as singularities of an otherwise regular surface and as intersections of several regular 

surfaces. An example of such irregular geometry is shown in Fig. 5, where sharp corners of the 2D 

image can be interpreted both as point vertices and as sharp edges of the 3D particle shape. 

Importantly, we still define ܵ௜ as maximal connected components of ୧ܵ୬୲, keeping Eqs. (5) and (6) 

valid. 

 
Fig. 5. An example of a multi-body multi-layered scatterer with piece-wise smooth boundaries and 

interfaces (having a finite number of edges and vertices). Each ௜ܵ is a closed connected surface, but 

not necessarily a regular one; it separates at least two domains, one of which may be the external 

medium. 

The boundary conditions (7) are still valid for all parts of ୧ܵ୬୲, except for singularities, but 

alone they are no longer sufficient to make the problem unambiguous. Additional assumptions must 

be invoked, e.g., that the charges and currents localized at shape singularities are zero, i.e., they do 

not radiate any energy (Chapter 9.2 of Ref. [16]): 
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�Ž�‹�•
���\�4


 » � †�6� � � � � „ � 8�>�ó�:���; 
 H � ö�:���;�Û�?
�Ì
�


 L � r� á (61)

where the closed surface �5��  contracts around the edge or vertex, e.g., having the shape of a capped 

curved cylinder and sphere, respectively. This has also been stated to be equivalent to the physically 

reasonable requirement of locally finite energy of the electromagnetic field (i.e., the energy is finite 

inside any bounded volume) or that �ó�:���; and �ö�:���; are locally square-integrable [3,16], and 

guarantees finite charge and currents on the whole �5�g�l�r. Unfortunately, we are not aware of a 

detailed discussion of this equivalence in the literature. Thus, we further consider the locally square-

integrability of the fields as a primary assumption and note that Eq. (61) follows from it and the 

Poynting theorem [4]: 


 » � †�6������ �„�>�ó�:���; 
 H � ö�:���;�Û�?
�!�Ï


 L 
 F� ‹� ñ 
 ± � †�7�� �:�Ý�:���;�Û���ó�:���;���6 
 F � ä�4���ö�:���;���6�;
�Ï

�ä (62)

Importantly, Eq. (62) can be applied to surfaces �ò�8 crossing the scatterer interfaces, since Eq. (7) 

implies the continuity of the integrand over the interfaces14 and the integration surface can be 

deformed to circumvent the interfaces (Fig. 6). The integrability of the integrand on the right-hand 

side of Eq. (62) implies that it can be considered both over the finite volume enclosing the shape 

singularity (�8) and over the same volume with the singularity excluded (�8�3�8�� ), and the result is the 

same in the limit � Ü � \ � r. But the difference between these two approaches on the left-hand side of 

Eq. (62) is exactly Eq. (61) before taking the real part.15 

 

Fig. 6. An example of the deformation of the integration surface to circumvent the scatterer 

interfaces (shown by dashed curves), from (a) to (b). The surface integral does not change for any 

integrand that is continuous across the interfaces, while the volume integral is the same for any 

integrable function. 

                                                 
14 � � � „ � :� ó 
 H � ö�Û� ; 
 L 
 F�:� � 
 H � ó�; � „ � >� � 
 H�:� � 
 H � ö�Û�;�? 
15 Proving the reverse implication (from Eq. (61) to square integrability of the fields) is substantially more involved. 
The real part of Eq. (62) directly implies only integrability of �1
k�Ý�:���;
o���ó�:���;���6, which is not helpful if the medium is 
neither absorbing nor active in the neighborhood of the shape singularity. In this case, one may assume that Eq. (61) is 
valid before taking the real part, but that is unjustified unless one relates the regularity of the real and imaginary parts of 
Eq. (61) using general properties of the electromagnetic field, e.g., through the VIE. We leave the latter for future 
research. 
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Fig. 7. An example of the exclusion of shape singularities from the interfaces and volume domains. 

See the main text for an explanation of the symbols; the dashed lines denote the parts of the original 

irregular surfaces �5�Ü (cf. Fig. 5) falling inside the neighborhood of singularities. Each �5�Ý
�p is a regular 

connected surface separating exactly two domains, one of which may be the external medium. 

To derive the VIE from the differential Maxwell equations, we proceed analogously to 

Section V. We write down Eq. (34) for each �8�Ü
�ñ and add them up together with Eq. (36) for �8�c�v�r

�ñ .16 

Each �ò�8�Ü
�ñ is a union of one or more �5�Ý

�p and zero or more �5�Ý�á�ß
�� , while �ò�8�c�v�r

�ñ  additionally includes �5�¿ (in 

the limit �¿�\ �»). In the final sum, each �5�Ý
�p occurs exactly twice and with opposite signs canceling 

each other, while each �5�Ü�á�Ý
��  occurs only once. Applying additionally Eq. (31) and 

�ï �Ï�[�n�j
�ò �:���; 
 E 
 Í �ï �Ï�Õ

�ò�:���;
�Ý


 L � s 
 F�ï�Ì�_�d�j�ë�Ï�i
$
$
$�:���; (64)

[cf. Eq. (41)], where �8�q
%� � � 8�q� ë � ò� 8�q, we obtain 

�ó�q�a�_�:���; 
 L � Ž� ‹� •
���\�4


 ± � †�7���ñ�õ
%�:���á ���ñ�; � „ � ��:���ñ�;
�Ï �_�d�j�3�:�Ï 
� �ë�Ï�i �;


F
�ú� „ � ��:���;

�G�5
�6 
 E 
 Í 
 » � †�6���ñ�����:���ñ� á � ��;

�Ì�Ô

��Ü

 (65)

for � � � Ð � 9�7�3�:�5�g�l�r� ë � 8�q
%�;. 

When we take the limit of �8�q contracting to the shape singularities, the volume integral in 

Eq. (65) behaves regularly owing to �ó�:���;, and hence ���:���;, being square-integrable inside �8�g�l�r. 

Therefore, the limiting result is the integral over �8�g�l�r�3�8��  exactly as in Eq. (37). The only remaining 

proposition to prove is that 

�Ž�‹�•
���\�4


 » � †�6���ñ�� �:���ñ� á � ��;
�Ì�Ô


�

 L � r� á (66)

where �/ should not be mistaken for the parameter of the volume integral in Eq. (65). For a fixed ��, 

Eq. (66) follows from the trivial analysis of singularity orders. In particular, square integrability of 

�ó and �ö inside �8�q implies that 

                                                 
16 Strictly speaking, the entire boundaries �ò�8�Ü

�ñ and �ò�8�c�v�r
�ñ  must be smooth, which does not hold at junctions between �5�Ý

�p 
and �5�Ý�á�ß

�� . However, the corresponding junctions can be locally smoothed (at a scale much smaller than �Ü) without 
changing any relevant integrals due to the boundedness of the fields in a small neighborhood of a junction. 
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���ó���á���ö�� 
 L � J
�D�:�Ü�?�5�;� á � •� ‡� ƒ� ” � ‡� †� ‰� ‡� á

�D
k�Ü�?�7 �6�¤ 
o�á �•�‡�ƒ�” �˜�‡�”�–�‡�š�á
 (67)

where �Ü denotes the distance from the edge or vertex, respectively. Note that Eq. (67) is a weaker 

condition than the abovementioned tip condition; still it implies 

�d
» �†�6���ñ�����:���ñ� á � ��;
�Ì�Ô


� ��
� d 
 L � J

�D�:�s�;�á �•�‡�ƒ�” �‡�†�‰�‡�á
�D
k�Ü� 5 � 6�¤ 
o�á �•�‡�ƒ�” �˜�‡�”�–�‡�š�á

�K
���\�4
�1�Û�. �r�ä (68)

For a combined shape singularity with edges and vertices, Eq. (68) is valid for each simple part of 

�5�Ü
�� , while there is only finite number of such parts. 

To finalize the equivalence we note that the reverse path from the VIE (with a locally-square-

integrable solution) to the differential Maxwell equations and boundary conditions remains exactly 

the same as in Section VI. 

The published literature on the existence and uniqueness of the solution for particles with 

irregular boundaries is scarce and was partly mentioned in Section VII. In particular, Chapter 9.2 of 

Ref. [16] proves uniqueness for a positive real �Ý�:���; and any passive host medium, while Chapter 

3.5 of Ref. [3] proves the uniqueness for a non-absorbing host medium and �1
k�Ý�:���;
 o 
 P � ?�4 almost 

everywhere in �8�g�l�r. van Beurden and van Eijndhoven [13] also considered a non-absorbing host 

medium and assumed both �8
k�Ý�:���;
o and �1
k�Ý�:���;
o to be nonnegative and at least one of them 

positive almost everywhere in �8�g�l�r.17 Thus, the entire Section VII and its concluding conjecture 

[Fig. 4 and Eq. (60)] remain plausible for general scatterers with irregular boundaries. 

To conclude this section, let us reiterate that the VIE is directly applicable to particles with 

edges and vertices without any modification, and thus can be thought of as being superior to the 

differential formulation which requires extra assumptions. However, this is not a fundamental 

difference between the integral and differential formulations, but rather a consequence of a specific 

problem in which a natural assumption of local square integrability of the VIE solution (a choice of 

the solution space) is sufficient to eliminate the spurious solutions of the original differential 

problem. Moreover, not every possible VIE for electromagnetic scattering has this desirable 

property. It holds if Eq. (38) or (39) is reformulated in terms of ���:���; or �ò�:���; �� �Ý�:���;�ó�:���;, requiring 

only that �Ý�:���; be nonzero almost everywhere [13]. However, it is not so for the so-called potential 

VIE (with scalar and vector potentials as unknowns). In particular, when applied to a homogeneous 

cube with �Ý close to certain negative real values, it leads to spurious solutions localized at edges and 

vertices [22]. Those solutions seem to have nonzero charges/currents on edges and vertices that 

should be avoided according to Eq. (61). This can be explained by the fact that square integrability 

                                                 
17 There seems to be a minor error in their derivation: the absolute value in Eq. (16) of Ref. [13] should be replaced by 
the real part for coerciveness to hold. This implies that �Ý�:���; should not be purely imaginary as well. However, this is 
not essential, since this case is covered by Cessenat [3] anyway. 
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of the potentials (naturally occurring for the discretized solution of the integral equation) does not 

imply square integrability of the fields (due to the extra differentiation). Hopefully, this can be 

alleviated by a more careful choice of the testing functions for the discretization of the integral 

operator, as mentioned in Ref. [22]. 

IX. CONTINUITY WITH RESPECT TO (ܚ)࢓ 
All previous sections vividly demonstrate how complexities of the scatterer morphology result in 

complications of the differential scattering problem (extra assumptions) and derivations of its 

equivalence to the VIE. In the following, we draft an alternative approach which mostly deals with 

the simplest case of an everywhere smooth ݉(ܚ), more specifically, a Hölder-continuous one. In 

this case the VIE is equivalent to the differential Maxwell equations (without boundary or any 

additional conditions) � see the discussion following Eq. (38). The corresponding operator is well-

behaved [15,21], as discussed in Section VII, and the solution is smooth. So the main idea is to 

replace the solution for an arbitrary scatterer (with sharp and irregular interfaces) by the limit of 

solutions for a smooth ݉(ܚ). 
This idea has been mentioned in various forms in the literature. For instance, Chapter 9.1 of 

Ref. [16] mentions that the result for an edge can be defined as a limit of the results for a smooth 

boundary, when the latter is transformed into an edge. Kline [38] proposed a general way to 

generalize the differential Maxwell equations to encompass discontinuous fields and/or material 

properties, based on the postulation that the integral representation (not necessarily a VIE) derived 

for the smooth case directly applies to the discontinuous case. Moreover, it is postulated that the 

limit of solutions for the continuous case is the proper solution for the discontinuous case, provided 

the latter allows several solutions. The boundary conditions (7) naturally appear in this approach as 

an implication of the VIE (see Section VI), which has been mentioned specifically in Ref. [14] as a 

consequence of assuming that the Maxwell equations are satisfied in ℝଷ in the generalized-function 

sense. However, we are not aware of any detailed description of this approach, not to mention a 

rigorous proof. Thus, we start filling this gap in the following, although we may pose more 

questions than we are currently able to answer. 

First, a wide class of discontinuous functions ݉(ܚ) can be approximated by a sequence of 

everywhere smooth (Hölder-continuous) {݉௡(ܚ)} in some functional, e.g., ܮଶ, norm, i.e.,  lim௡→ஶࣾ௡ = ࣾ, (69)

where handwritten symbols denote functions in contrast to their values at a particular point 

[cf. Eq. (54)]. We do not give rigorous definitions here, but that is related to the space of smooth 

functions being dense inside ܮଶ(ℝଷ\ܸୣ ୶୲) or a similar space � a standard topic of functional 
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analysis. At a minimum, all scatterers with a finite number of irregular interfaces discussed above 

can be represented in this way. 

Second, we note that the operator �Û in Eq. (54) implicitly depends on �þ , hence the solution 

of this equation is given by 

� ß 
 L � Û�?�5�:�þ �;�ß�g�l�a�ä (70)

The most important part of the whole derivation is the dependence of �ß on �þ  for a fixed �ß�g�l�a, in 

particular, whether this dependence can be assumed continuous. The conjecture is that 

�Ž�‹�•
�á�\�¶

�Û�?�5�:�þ �á�;�ß�g�l�a
 L � Û�?�5�:�þ �;�ß�g�l�a (71)

in some domain of �þ , where we additionally assume that �Û�?�5 is well-defined for �þ  and each of 

�þ �á, i.e., the solution of each respective scattering problem exists and is unique (as discussed 

below). While the continuity seems reasonable for a smooth resulting �þ , it is not at all evident for 

discontinuous ones which represent our main interest. The potential failure of Eq. (71) may be 

caused by several factors: the limit may (i) not exist, (ii) be unbounded (i.e., each �ß�á ��

�Û�?�5�:�þ �á�;�ß�g�l�a is locally square integrable, but its limit is not), or (iii) be not equal to the right-hand 

side. 

The detailed rigorous analysis of the continuity conjecture in proper functional (Sobolev) 

space remains the subject of future research. On one hand, it is further complicated by the fact that 

the dependence of �Û on �þ  is of the form “identity + linear” [cf. Eq. (55)], which makes �Û�?�5 non-

linear with respect to �þ . On the other hand, the nature of this dependence is multiplicative 

[cf. Eq. (3)], thus making it easily invertible. Moreover, the VIE is probably less sensitive to shape 

features than surface-integral formulations (see, e.g., Chapter 5 of Ref. [39]). However, it is for the 

latter that certain continuity has actually been proven, albeit only for perfect conductors with 

smooth surfaces (see Chapter 7.2 of Ref. [21]). 

Third, if �Ž�‹�•
�á�\�¶

�ß�á��exists, it is natural to postulate it as the definition for the solution of the 

scattering problem for an irregular �þ . If, additionally, this limit equals �ß from Eq. (70) (i.e., the 

continuity conjecture holds) then this solution can be obtained from the VIE with no modifications. 

While this concludes the template of a proof, we further discuss three related issues which 

give some additional confidence in the continuity conjecture. 

We start with a discussion of the existence and uniqueness, i.e., whether �Û�?�5�:�þ �; exists and 

is bounded and whether it follows from the regularity of �Û�?�5�:�þ �á�;. Most of the results from 

Section VII apply but require minor modifications to account for taking a limit. To this end, we 

analyze the general, albeit hypothetical condition (60). On one hand, wherever �þ  is smooth, the �.�6 

convergence of Eq. (69) implies a point-wise convergence, at least for a subsequence of �I �á�:���;; 

hence,  
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So we have a convergence of the convex hull of the spectrum of �Û�q�r. This does not tell us anything 

about the discrete spectrum of the operator for �G�5 
 M � r, but we may expect the continuity to hold for 

those discrete eigenvalues, since the most problematic part of �õ
%, and hence of �Û, is the strongly 

singular static part �õ
%�q�r which fully manifests itself in �Û�q�r. The continuity of the convex hull of the 

spectrum is much weaker than that implied by Eq. (71), but does show some similarity of its left- 

and right-hand sides, e.g., in terms of their numerical computation.21 

Thus, we arrive at the convergence of the discretization schemes for the numerical solution of 

the VIE. The latter can be the topic of a separate review (see, e.g., Refs. [5,22]); here we only note 

that discretization effectively replaces the integral operator �Û with an operator �Û�Ç having a finite 

rank N. It is typically assumed that 

�Ž�‹�•
�Ç�\�¶

�Û�Ç
�?�5�:�þ �;�ß�g�l�a
 L � Û�?�5�:�þ �;�ß�g�l�a�á (75)

which is a manifestation of so-called numerically-exact solutions [37,40] and is realized in practice 

for the VIE discretized with proper basis and testing functions. Importantly, any bounded finite-

rank linear operator is equivalent to the matrix and, thus, is continuous: 

�Ž�‹�•
�á�\�¶

�Û�Ç
�?�5�:�þ �á�;�ß�g�l�a
 L � Û�Ç

�?�5�:�þ �;�ß�g�l�a�ä (76)

We may even choose a sequence of smooth functions �þ �á such that22 

�Û�Ç�:�þ �á�; �  � Û�Ç�:�þ �;� á � J 
 R � 0� á (77)

but this is not required for the following. 

An important hypothesis is the uniform convergence of the limiting sequence in Eq. (75) for 

all scatterer functions in the neighborhood of �þ , or at least for the sequence �<�þ �á�=. It implies the 

possibility to interchange the limits leading, along with Eq. (76), to 

�Ž�‹�•
�á�\�¶

�ß�á 
 L � Ž� ‹� •
�á�\�¶

�Ž�‹�•
�Ç�\�¶

�Û�Ç
�?�5�:�þ �á�;�ß�g�l�a
 L � Ž� ‹� •

�Ç�\�¶
�Û�Ç

�?�5�:�þ �;�ß�g�l�a
 L � ß� á� � (78)

which is exactly the continuity conjecture (71). It is not clear, however, whether proving the 

uniform convergence of Eq. (75) is fundamentally easier. Conversely, a proof of Eq. (71) would 

actually justify the use of the discussed numerical methods for a discontinuous �þ , which may seem 

questionable since they make no distinction between �þ  and �þ �á (for a large enough �J for a fixed 

�0). The latter has been discussed and practically justified in the DDA simulations of light scattering 

by a cube [6]. Moreover, Eq. (78) can be generalized to describe the convergence of the spectrum of 

the discretized operator which has been analyzed numerically for a few examples in the framework 

of the DDA [19,41]. 

                                                 
21 The convergence of an iterative solver is determined by the envelope of the spectrum [23], which is not necessarily 
the convex hull, but rather a simply connected superset of the spectrum. However, the construction of smooth 
approximations before Eq. (73) can be modified such that �Ý�á�:�9�7�; lies within this envelope. 
22 For instance, in the simplest case of the DDA with a cubical discretization and pointwise testing (the collocation 
method) only the values of �I �:���; in the centers of the cubes matter. Any smoothing of �þ  between these nodes does not 
change the discretized operator, e.g., as discussed before Eq. (73). 
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To finalize this section, we stress once again that the rigorous proof of the continuity 

conjecture (71) or, more specifically, the evaluation of specific conditions on the underlying 

functions that make it valid, remains to be done. However, there exists additional supporting 

physical reasoning. Since the physical properties of the materials are discontinuous at atomic scales, 

the macroscopic Maxwell equations (1) are typically derived from the microscopic ones by 

averaging over some finite size �Ü [40]. Hence, Eq. (1) is valid only down to the scale of �Ü, and any 

variation of �þ  at a smaller scale should not affect the solution. In other words, when using Eq. (1) 

we implicitly assume that any such variation of �þ  has negligible effect for large enough scatterers, 

which is similar to assuming the uniform convergence of Eq. (75). The only other option is to 

rigorously average the microscopic Maxwell equations near the material discontinuities, 

considering a realistic placement of atoms, the interaction of electrons, etc., which will be entirely 

daunting near the intersection of several interfaces. Surely, this physical reasoning is not a substitute 

for a rigorous mathematical proof, but it helps achieve a certain level of mental comfort. 

X. CONCLUSION 

Consistent with the objectives formulated in the Introduction, we have presented a general 

derivation of the VIE for a very general type of scatterer in the form of an arbitrary spatially finite 

group of particles, including those with edges, corners, and intersecting internal interfaces, 

immersed in a passive host medium. We have thoroughly discussed the existence and uniqueness of 

the VIE solution related to the spectrum of the corresponding integral operator. Moreover, we have 

shown that the conjectured continuity of the inverse integral operator with respect to the refractive-

index function leads to an even simpler derivation of the VIE. Whenever possible, we have closely 

followed previously published derivations and constructed a new derivation and new conjectures to 

fill the existing gaps. Importantly, we believe that the resulting description is reasonably self-

contained and complete, covering the VIE from all possible conceptual perspectives. As such, our 

paper could also be considered a review of the current state-of-the-art of this subject. 

Yet a lot of work remains to be done. First, in order to make the derivations widely accessible, 

we have refrained from complete mathematical rigor in certain places, e.g., in terms of specific 

smoothness requirements for the fields and constitutive parameters. This issue seems to be a rather 

technical one and should be resolvable along the lines of the referenced rigorous accounts. Second, 

we formulated two important conjectures: (i) the general condition on the electric permittivity of the 

scatterer and the host medium to guarantee the existence and uniqueness of solution, and (ii) the 

continuity of the VIE solution with respect to the refractive-index function. To attain the full 

predictive power, these conjectures need to be rigorously proved with a specification of the function 

spaces in which they are satisfied. Third, it is highly desirable to extend this complete analysis to 
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anisotropic and magnetic materials. Accounting for material anisotropy is straightforward and 

mostly amounts to replacing the scalar electric permittivity (or refractive index) by a dyadic one and 

tracing it appropriately through all the derivations. The consideration of magnetic materials should 

result in replacing a single VIE with a system of two coupled VIEs, for the electric and magnetic 

fields, respectively. The derivation of such VIEs can be expected to be lengthier, but not 

fundamentally more involved. However, the existence and uniqueness conditions will require a 

separate analysis. 
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