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Saturn Probe science theme — Decadal Survey

« Planetary Sciences Decadal Survey

— Saturn Probe mission one of several
recommended Medium-class missions for NASA’s
New Frontiers program
* Objectives
— 1: Determine Saturn’s Role in Solar System
Formation and Evolution

» Measure noble gas abundances and isotopic ratios
of H, C, N, O in Saturn’s atmosphere

— 2: Characterize Saturn’s atmosphere structure
and composition

» Measure atmospheric structure and cloud

properties at Probe descent location
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SPRITE was proposed as a New Frontiers candidate mission to address these high-

priority Decadal Survey objectives



Science overview

» The giant planets in our solar system contain clues to the origin of the
planets and the conditions that set up terrestrial planet formation

— These will be key to also understanding exoplanet systems

« Comparative study of Giant Planet composition and structure maps
gradients in time and space in our protoplanetary disk

— Jupiter will be well studied after Galileo/Juno, but which of its features (core
size, circulation, etc.) are unique vs universal?

— Cassini will leave remaining knowledge gaps about Saturn that require in situ
sampling and are needed to fit into the puzzle of solar system formation



SPRITE science objectives

Goal I. Collect and analyze evidence of Saturn’s formation and early evolution

1. Obtain a chemical inventory of Saturn’s troposphere to distinguish between competing
models of planet formation and extent of migration in the early solar system.

2. Constrain Saturn’s He depletion to reconcile observed temperatures with thermal
evolution models.

Goal Il. Reveal the truth beneath Saturn’s clouds — what is really going on?

3. Measure Saturn’s in situ atmospheric chemistry to confirm condensation models and to
interpret remotely observed composition.

4. Perform in situ characterization of Saturn’s tropospheric cloud structure to provide the
ground truth basis for cloud retrieval models.

5. Determine Saturn’s in situ 3-D atmospheric dynamics along the probe descent path to
bound global circulation and analytical models of the time-variable cloud top motions.

This entry probe mission, with a 90-min. descent to 10 bars, completes the gas giant
puzzle framed by the Galileo, Cassini, and Juno missions



Glant planets key to understanding Solar System formation
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composition and isotopic ratios. Competing models exist.

Distinguishing between models requires measurements of He, Ne, Ar, Kr, Xe,
C, N, O, and S abundance and their isotope ratios.



Interpretlng remote observations is not enough to solve this

 We can’tinfer a giant planet’s chemistry, clouds, and
circulation from a view outside its opaque clouds

e Remote imaging / spectral observations limited to cloud
tops and above

» Spectral data do not reveal the actual cloud composition
e Can’t accurately model circulation

o Chemistry, thermal structure, deep winds, and vertical
motions drive the weather, and climate, at the visible
cloud tops

* Interpretation of remote sensing data (including
exoplanets) relies on many assumptions

» SPRITE can serve that role for Saturn.
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In situ data anchor these models, unlocking the full
potential of remote sensing data.




Deep water abundance necessary for Objective 1

Saturn with 1x, 5x, 10x solar O, N, S, Ar
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SPRITE has a focused payload of 4-instruments

QMS - Quadrupole Mass Spectrometer (GSFC) 35_ b
— Measure noble gas and elemental abundances; 2
key isotopic ratios

e TLS - Tunable Laser Spectrometer (JPL)
— Measure noble gas and key elemental abundances of
C, S, O, and N species; abundance profiles of disequilibrium
and condensable species (PH,, C,Hg, NH,, CO)

» ASI - Atmospheric Structure Instrument (ARC) s
— Measure g-loads during entry, and pressure/temperature durirng oe

— Determine atmospheric structure to 10-bar pressure, including vertical profile of
horizontal and vertical winds

— Determine cloud altitudes and measure optical depth

PROBE
INSTRUMENTS

e  MCI — Multi-Channel Imager CARRIER SPACECRAFT INSTRUMENTS

— Provide context imaging for in situ measurements prior to entry




SPRITE mission design

e 10-year mission
— Launchin 2024
— Gravity assists of Venus, Earth, Earth
— Saturn flyby in 2034
« Solar-powered Carrier Relay Spacecraft (CRSC) carries atmospheric probe
— Probe released at entry T-30 days on battery power
— Remote observations from carrier relay spacecraft 5 days prior to probe entry
— ~26 km/s probe entry; relay for 90 min satisfies all objectives + 30 min science margin
— Carrier relay tracks probe, records data; relays back to Earth after flyby
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SPRITE flight elements
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