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 This research proposes a climate index called Standardized Soil Moisture Index (SSI) to detect 280 
droughts. SSI was derived from satellite soil moisture data of SMAP and the long-term land surface 281 
model NLDAS data to facilitate drought detection in short terms such as three days. By doing so, 282 
drought warnings can reach the farmers and foresters at a timely fashion.  283 

We first validated the accuracies of the input data. The SMAP soil moisture data displayed 284 
good statistical correlations (R2 = 0.4611 for 2015 and 0.6240 for 2016) with in-situ SCAN data and 285 
with acceptable RMSEs (0.0819 for 2015 and 0.0748 for 2016). However, we found large inconsistency 286 
in areas that are not friendly for satellite observations such as vegetation, water bodies, urban, and 287 
high slope terrains. 288 

The validation of SSI through PDSI and NDWI suggested SSI was an effective measure of 289 
moisture conditions. The correlation between SSI and PDSI for April 2015 is acceptable (r = 0.52), and 290 
the correlation between SSI and NDWI is slight ly  better (r = 0.56). PDSI is a monthly index. 291 
Therefore, SSI could provide shorter-term warnings than PDSI . Thus, SSI is a favorable index over 292 
PDSI for drought detection.  293 

In summary, our SSI is a new climate index for drought detection. It is computed from daily 294 
satellite data and statistics from long-term soil moisture data, and therefore can provide short-term 295 
warning of drought conditions. Moreover, SSI is easy to interpret for farmers and foresters due to its 296 
simple and transparent statistical construct. Our research validated the SSI using multiple external 297 
sources of soil moisture data. The inconsistency of satellite observations with ground data could be 298 
solved by downscaling satellite data in the future work.  299 

Suppl ementary Materials:  The following are available online at 300 
https://www.youtube.com/watch?v=VS86Ib2NGog&index=21&list=PLL8pCbx5gnDYUM084cxFpmidjGJJ1bO301 
wf , Video: Southeast U.S. Agriculture - NASA DEVELOP Summer 2016 @ Wise County.  302 
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Appendix A 314 

The calibration of NLDAS data for calculation SSI. 315 

Table A1. NLDAS calibration. 316 

Date NLDAS mean  SMAP mean  N/S NLDAS std  SMAP std  N/S 
April 1, 2015 23.705 0.35731 66.34 5.5943 0.11158 50.13 
April 2, 2015 23.413 0.35734 65.52 5.7149 0.08671 65.91 
April 3, 2015 23.912 0.40322 59.30 6.6633 0.09153 72.80 
April 1, 2016 26.860 0.38171 70.37 6.5042 0.08346 77.93 
April 2, 2016 26.087 0.44331 58.84 5.4096 0.07346 73.64 
April 3, 2016 24.792 0.41021 60.44 5.4099 0.08887 60.88 
April 1, 2017 23.829 0.36315 65.62 6.6062 0.10416 63.43 
April 2, 2017 23.036 N/A 1 N/A 1 6.4982 N/A 1 N/A 1 
April 3, 2017 25.442 0.36161 70.36 8.3495 0.12412 67.27 
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1 2 April 2017 calibration was not available due to the missing data for SMAP. 317 

Table A1 shows the statistic information obtained from ArcGIS. 318 
Take April 01, 2015 as an example, 319 
Mean(NLDAS)= 23.705 320 
STD(NLDAS)=5.5943 321 
Mean(SMAP)=0.35731 322 
STD(SMAP)= 0.11158 323 
Therefore,  324 
Mean(NLDAS)=66.343 *Mean(SMAP) 325 
STD(NLDAS)=50.137 *STD(SMAP) 326 
in which NLDAS Value = 100 times of SMAP Value because of the unit difference. 327 
Therefore, in the equation of SSI, we should divide the mean of NLDAS by 66.343, and divide 328 

the STD by 50.137 to get a predicted SMAP value. 329 
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lower values along the western border, and one pixel of higher value in northwestern Louisiana. SSI 198 
for April 2015, in contrast , shows the soil is generally wetter, except southern Mississippi, southern 199 
Alabama, Georgia, North Carolina and southern Florida (figure 1b).  200 

3.2. Validation Result 201 

3.2.1 SMAP Validation 202 

The correlations between SMAP soil moisture data and the SCAN data were between 0.1506 203 
and 0.9177. The correlations between SCAN and NLDAS data were between 0.376 and 0.7742. The 204 
RMSEs for SMAP were between 0.0428 and 0.1379, which do not meet ���������1�–�’�œ�œ�’�˜�—���œ�1specification 205 
(0.04 or 4% m3/m3) for low or moderately vegetated areas. Given that the southeast United States are 206 
mostly covered by high vegetation, the validation result is still acceptable. Table 3 shows the 207 
R-squared and RMSE for SMAP in 2015 and 2016. Note that the correlation for station Uapb-Earle in208 
2016 was invalid due to missing SCAN data.209 

Table 3. SMAP validation with SCAN stations. 210 

Station ID  Station Name  R2 for 2015 R2 for 2016 RMSE for 2015 RMSE for 2016 
2013 Watkinsville #1  0.6802 0.9124 0.0567 0.0791 
2024 Goodwin Ck Pasture  0.7634 0.6817 0.0795 0.0591 
2053 Wtars 0.4612 0.9177 0.0624 0.0428 
2039 N Piedmont Arec  0.5783 0.2499 0.0712 0.0774 
2005 Princeton #1 0.3115 0.5144 0.0762 0.0526 
2012 Sellers Lake #1 0.2827 0.468 0.1288 0.1379 
2085 Uapb-Earle 0.1506 N/A  0.0983 N/A  

Average 0.4611 0.6240 0.0819 0.0748 

3.2.2 Validation with PDSI and NDWI 211 

212 
(a) (b) 

Figure 2. (a) PDSI for April 2015. Areas in yellow and red represent areas that are experiencing dry 213 
conditions. (b) NDWI calculated for 01 to 03 April 2015. Likewise, areas in yellow and red represent 214 
areas that are experiencing low vegetation water content and therefore a dry condition.  215 



REVIEW 7 of 14 

PDSI is a standardized index that spans -10 (dry) to +10 (wet) [34]. Figure 2(a) shows the 216 
reference image of PDSI for April 2015. Compare to the SSI result for April 2015 (figure 1b) , the 217 
drought patterns are generally consistent. The scatter plot shows the correlation between SSI and 218 
PDSI is moderate: the correlation coefficient (r) was 0.52 (figure 3a). PDSI is effective in determining 219 
long-term drought [34] , but not for short time periods such as daily soil moisture deficiency. For 220 
daily comparison, MODIS NDWI was used to test the accuracy of short-term SSI. 221 

NDWI is dimensionless and ranges between -1 (low vegetation water content) to +1 (high 222 
vegetation water content) [33]. Figure 2 (b) shows that the NDWI has a quite different pattern from 223 
the PDSI (figure 2a), but is very close to the SSI for 1 to 3 April 2015 (figure 1a). The dry condition 224 
monitored through NDWI in western Kentucky and western Tennessee matches the low-value areas 225 
by SSI. The wet condition in Florida from NDWI was also observed from SSI. This suggests that SSI 226 
is more sensitive than PDSI for short-term drought monitoring. Scatter plot shows the correlation 227 
between SSI and NDWI is strong: the correlation coefficient ( r) value was 0.56 (figure 3b). 228 

229 

(a) (b) 

230 

Figure 3. (a) Scatter plot for April 2015. The correlation between SSI and PDSI is moderate (r = 0.52). 231 
(b) Scatter plot for 1 to 3 April 2015. The correlation between SSI and NDWI is strong (r = 0.56).232 

233 

4. Discussion234 

The SMAP validation revealed that the average correlation between SMAP data and SCAN 235 
data were 0.4611 for 2015 and 0.6240 for 2016. Four low R-squared values suggested some 236 
discrepancy between SMAP and SCAN data. The R-squared at the Uapb-Earle station in Arkansas 237 
for the year 2015 was exceptionally low (0.1506). Low R-squared values were also found at the N 238 
Piedmont Arec station in Virginia (for 2016), the Sellers Lake #1 station in Florida (for 2015), and the 239 
Princeton #1 station in Kentucky (for 2015). Figure 4 shows the correlations between SCAN values 240 
and SMAP values for the four stations. 241 
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242 
243 

Figure 4. Scatter plot between SCAN values and SMAP values for the four anomaly stations with the 244 
R-squared values: Uapb-Earle station in Arkansas (for the year 2015), R-squared value was 0.1506; N 245 
Piedmont Arec station in Virginia (for 2016), R -square value was 0.2499; the Sellers Lake #1 station in246 
Florida (for 2015), R-square value was 0.2827; and the Princeton #1 station in Kentucky (for 2015),247 
R-square value was 0.3115.248 

To discover what caused these significantly low accuracies in the abovementioned stations, we 249 
created time-series plots to identify the outliers between SMAP and SCAN (Figure 5).  250 
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(b) 

(c) 
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