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SPACECRAFT ALIGNMENT DETERMINATION AND CONTROL 
FOR DUAL SPACECRAFT PRECISION FORMATION FLYING 

Philip C. Calhoun,* Anne-Marie Novo-Gradac,† and Neerav Shah‡ 

Many proposed formation flying missions seek to advance the state of the art in 

spacecraft science imaging by utilizing dual-spacecraft precision formation flying 

(PFF) to enable a “virtual” telescope (VT). Using precision dual-spacecraft 

alignment, very long focal lengths can be achieved by locating the optics on one 

spacecraft and the detector on the other. Proposed science missions include 

astrophysics concepts for X-ray imaging and exo-planet observation with large 

spacecraft separations (1000 km to 80,000 km), and heliophysics concepts for X-

ray or extreme ultra-violet (EUV) imaging or solar coronagraphs with smaller 

separations (50m – 500m). These proposed missions require advances in 

guidance, navigation, and control (GN&C) for PFF to enable high resolution 

science imaging. For many applications, the dual-spacecraft dynamics are coupled 

through the GN&C system when the relative ranging and position alignment 

sensor components are not co-located with their respective spacecraft mass 

centers. We develop a model-based PFF system design approach for the VT 

application, considering the coupling inherent in precision dual-spacecraft inertial 

alignment. These systems employ a variety of GN&C sensors and actuators, 

including laser-based alignment and ranging systems, camera-based imaging 

sensors, inertial measurement units (IMU), as well as microthruster systems and 

image motion compensation platforms. Results of a GN&C performance 

assessment reveal how data from relative position sensors can be employed in a 

Kalman filter framework to significantly improve alignment estimation 

performance. The assessment provides a comparison of two different GN&C 

formation flying architectures, illustrating the performance trades inherent in the 

choice of PFF system architecture in the VT application.  

INTRODUCTION 

 Many proposed formation flying missions seek to advance the state of the art in spacecraft 

science imaging by utilizing dual-spacecraft precision formation flying (PFF) to enable a “virtual” 

telescope. The virtual telescope (VT) is formed by inertial alignment of an Optics (or Occulter) 

spacecraft relative to a Detector spacecraft at a nominally fixed separation, depending on the 

telescope focal length.  A functioning telescope with very long focal lengths can be achieved in this 

manner using precision dual-spacecraft alignment. Proposed VT science missions include 

astrophysics investigations using formation flying spacecraft with separations from 1000 km to 

80,000 km, such as the Milli-Arc-Second Structure Imager (MASSIM)1,2 the New Worlds Observer 
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(NWO)3,4,5,6, heliophysics concepts for solar coronagraphs7,8, and x-ray imaging9 with smaller 

separations (50m – 500m). These proposed missions require advances in PFF of two spacecraft. In 

particular, very precise inertial alignment control and estimation is required for inertial pointing of 

the “virtual” telescope to enable high resolution science imaging (e.g. milli-arc-sec). Figure 1 

shows the dual-spacecraft inertial (i.e. astrometric) alignment VT concept for a leader/follower 

formation flying architecture. A single optical sensor mounted on the Follower spacecraft is used 

to track the Leader spacecraft relative to an inertial guide star target within the sensor field of view.  

Figure 1.  Dual-Spacecraft Precision Inertial Alignment Sensing Concept. 

We develop the dynamics, sensor models, and GN&C architectures necessary to implement 

onboard systems for PPF of this dual-spacecraft VT concept. These systems employ a variety of 

GN&C sensors and actuators, including laser-based alignment and ranging systems, optical relative 

navigation sensors, star trackers, inertial measurement units (IMU), as well as microthruster and 

precision stabilized image motion compensation systems. For many applications, the use of relative 

ranging and position alignment sensors results in kinematic coupling of the two spacecraft through 

the GN&C system when sensor components are not co-located with the respective spacecraft mass 

centers. While this adds complexity to the typical telescope pointing design, it also provides the 

GN&C engineer with an opportunity to exploit this coupling through the use of model based 

methods.   

Previous work included a consider-state analysis method for evaluation of dual-spacecraft 

relative navigation and architectures for precise inertial alignment5. That work focused on 

transverse alignment only because those degrees of freedom are the most critical for VT precision 

GN&C, particularly for the longer baseline missions such as MASSIM1 and NWO2. We extend the 

analysis to include all translational and rotational degrees of freedom for a more generic VT 

specification including attitude and range states. While this full-state model-based framework is 

generally applicable over a wide range of spacecraft separations (including for long baseline 

astrophysics missions), it is particularly important for PFF in shorter baseline operation (50-500m) 

where attitude coupling is significant, such as for several proposed heliophysics missions. A 

systematic method for relating the basic VT science instrument specifications for image smear and 

depth of focus to the attitude and translational requirements is provided in this work. This method 

is then used to develop models for the relative position and alignment measurements from optical 

sensors to be used in the GN&C framework for control design. 
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We include a summary of a complete dynamics and control model framework for the 

development of alignment estimation and control algorithms. The basic equations for relative flight 

dynamics of two spacecraft flying in precise formation are developed by numerous authors, as 

summarized by Calhoun10. We use Luquette’s formulation11-14 of the relevant dynamics in an 

inertial reference as a basis for the GN&C design and analysis. A summary of relevant inertial 

sensor component models is also included in this paper. The models developed herein form a 

framework for full-state alignment filter and control system design methods. An example GN&C 

design for a proposed heliophysics VT mission concept is provided as a case study. The study 

results illustrate how a Kalman filter framework can be employed to significantly reduce the 

alignment error over that obtained from the baseline measurements. The case study also provides a 

comparison of two different GN&C formation flying architectures, illustrating the performance 

trades inherent in PFF for the VT application. 

VT STABILITY REQUIREMENTS AND MEASUREMENT MODELS 

Optical metering structures for large monolithic space telescopes are necessary for precise optics 

to detector alignment stability. However, they are impractical for on-orbit applications with long 

baselines (e.g. focal length > 50m). Launch vehicle payload constraints would require large and 

complex metering structures, deployed or assembled on-orbit. PFF of separate free-flying platforms 

for optics and detector assemblies may be used to “replace” the optical metering structure. The 

GN&C system provides a stable alignment for these assemblies, establishing a “virtual” platform 

for telescope pointing and stability. This type of PFF places unique requirements on the separated 

optics and detector platform dynamics and control, involving nine degrees of freedom (DoF) to 

fully characterize the image smear and stability of the depth of focus. The formation flying GN&C 

approach for dual-spacecraft rendezvous, proximity operation, or constellation management, 

involves at most the relative six DoF between platforms. The inertial alignment of the two free 

flying vehicles is usually not relevant. In this section, we develop the equations for the VT science 

imaging smear and depth of focus as a function of the nine DoF inherent in dual-spacecraft inertial 

alignment. This method is also applied to the development of measurement models for optical 

alignment and ranging sensor systems.  

Attitude and Translation Stability Requirements 

The first step in the GN&C design and analysis of the VT PFF systems and architectures is to 

derive requirements for the six attitude and three translational DoF for the dual-spacecraft 

formation as a function of the science imaging requirements at the detector. The following 

development is a formalization of the method provided by Novo-Gradac15. Figure 2 shows a 

breakdown of attitude and translational displacements starting from an ideal VT alignment of the 

detector and optics assemblies (i.e. no rotational or translational deviations from ideal optical axes), 

which is shown in blue. The green frame represents translational displacement of the optics 

assembly off the line-of-sight from detector to target. The red frame represents rotational motion 

for both Optics spacecraft and Detector spacecraft.  The resulting shift in optics center of focus 

from detector center is shown in Figure 2. From inspection of Figure 2 it can be deduced that the 

image stability, 𝛿𝐼 , with components image smear, 𝑠𝑥 , 𝑠𝑦 , and depth of focus, 𝑑𝑧, is expressed in 

terms of the spacecraft relative translational DoF, 𝛿𝑅, and absolute rotational DoF for Detector 

spacecraft, 𝜃⃑𝐷, and Optics spacecraft, 𝜃⃑𝑂 , as,   

 

𝛿𝐼  =  [
 𝑠𝑥
𝑠𝑦
𝑑𝑧

]  =   [𝑃⃑⃑𝐷 + 𝑃⃑⃑𝐷𝑂 + 𝛿𝑅 −  𝑃⃑⃑𝑂 + 𝑅(𝜃𝑂)𝑃⃑⃑𝑂 + 𝑓 (𝑅(𝜃𝑂)) 𝑃⃑⃑𝑂𝐷 ] −  𝑅(𝜃𝐷)𝑃⃑⃑𝐷 .    (1)    

Where the rotational operators, 𝑅(𝜃⃑⃑), can be expressed in terms of a small angles, 𝜃⃑, using cross 
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product operator notation, 𝜃̃, 

𝑅(𝜃) =  [ 𝐼 + 𝜃̃ ] .                (2) 

The function f is a mapping of focal plane image distortion (i.e. smear and depth of field) due to 

small rotations of the Optics assembly. This effect on VT center of focus is illustrated in Figure 2 

by slight rotation of the optical imaging due to the Optics spacecraft rotation. This would in general 

be non-linear and dependent on the optics design, but could be linearized for small angles, as  

 

         𝑓 (𝑅(𝜃𝑂)) =  [𝐼] + 𝜃𝑂
𝑛  ,        𝜃𝑂

𝑛 =  Φ 𝜃𝑂 .                     (3) 

Where the elements of , ij, are scaling factors (0 < ij < 1) derived from the optics design. These 

factors would be negligible (i.e. ij ~= 0) for small angular displacements of a diffractive optics 

assembly used in many x-Ray and extreme ultra-violet (EUV) VT applications. Combining (2) and 

(3) into (1) provides a simplified representation that serves as a basis for error analysis of image 

distortion in terms of requirements for the attitude and translation DoF.  

𝛿𝐼  =  [
 𝑠𝑥
𝑠𝑦
𝑑𝑧

]  =   𝑃̃𝐷 𝜃𝐷 +  [Φ 𝑃̃𝐷𝑂 − 𝑃̃𝑂 ]𝜃𝑂 +  𝛿𝑅 .                          (4) 

Equation 4 represents the coupling of the attitude and translational DoF for science imaging 

when the separated detector and optics components are not co-located with their respective 

spacecraft mass centers.  

 

Figure 2.  Detector Image Smear and Depth of Focus as function of Attitude and Translation. 
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Optical Alignment and Ranging System Measurement Models 

 The method given in the previous section to develop the science imaging requirements can also 

be used to model the relative position measurement for various optical (i.e. laser and camera) 

alignment and ranging components, illustrating this same 9 DoF coupling in the GN&C system 

design.  

The laser alignment system utilizes a position sensing detector mounted on the Detector 

spacecraft to measure the lateral alignment offset of an illuminated spot from a collimated laser 

source mounted on Optics spacecraft16. A non-collocated laser ranging system is also used to 

precisely measure the relative range. Then we can use Eq. (4) as a laser alignment and ranging 

measurement model by replacing appropriate variables,   

 

𝛿𝐿  =  [
 𝑙𝑥
𝑙𝑦
𝑟𝑧

]  =   𝑃̃𝐿  𝜃𝐷 +  [Φ 𝑃̃𝐿𝐵 − 𝑃̃𝐵 ]𝜃𝑂 + 𝛿𝑅 .                                (5) 

Where 𝛿𝐿 represents the measured displacements from laser spot detector center, in terms of 

alignment errors, 𝑙𝑥 , 𝑙𝑦, and ranging errors, 𝑟𝑧. The variables, 𝑃̃𝐿 , 𝑃̃𝐵, 𝑃̃𝐿𝐵, represent the cross 

product operators for position vectors of the laser detector elements on the Detector spacecraft, the 

laser beacon elements on Optics spacecraft, and the relative position from laser detectors to 

beacons, respectively. For this model, the scaling matrix diagonal elements, ii, are set equal to 1 

for a laser beacon mounted on the Optics spacecraft. They are set equal to 0 if the beacon is 

collocated with the detector and a corner cube reflector, mounted on Optics spacecraft, serves as 

the virtual beacon. 

 

 

Figure 3.  Alignment Camera line-of-sight as function of Attitude and Translation. 

Beacon

Camera



 6 

An alignment camera (e.g. similar to the Advanced Video Guidance Sensor (AVGS)17,18) 

mounted on the Detector spacecraft  can be also be used to measure the relative spacecraft 

alignment by tracking laser beacons or retro reflectors mounted on the Optics spacecraft. The 

measurement model for this camera-based sensor can be derived as follows. From inspection of 

Figure 3 it is deduced that the location of a tracked laser beacon on Optics spacecraft, relative to 

the alignment camera image plane center, 𝑃⃑⃑𝐶𝐵, is expressed in terms of the spacecraft relative 

translational 𝛿𝑅, and absolute rotational, 𝜃⃑𝐷 , 𝜃⃑𝑂 DoF as,   

 

𝑃⃑⃑𝐶𝐵 =  [ 𝑃⃑⃑𝐶 + 𝑃⃑⃑𝐶𝑂 +  𝛿𝑅 + 𝑅(𝜃𝑂)𝑃⃑⃑𝐵 ] −  𝑅(𝜃𝐷)𝑃⃑⃑𝐶  .                           (6) 

 

Then, the laser beacon spot centroid on the camera image can be expressed in terms of angles, 

𝜃𝑥 , 𝜃𝑦.  

[𝜃𝑥 , 𝜃𝑦] =  [atan (𝑃⃑⃑𝐶𝐵(2)
𝑃⃑⃑𝐶𝐵(3)

) ,  atan (𝑃⃑⃑𝐶𝐵(1)
𝑃⃑⃑𝐶𝐵(3)

)  ] .                                    (7) 

VT DYNAMICS AND CONTROLS FRAMEWORK FOR GN&C DESIGN 

A complete framework for the VT GN&C system design for PFF combines system dynamics 

and inertial sensor models with the optical sensor measurement models given in the previous 

section. In this section we provide a summary of the dynamics and inertial sensor models presented 

in prior work by Calhoun10. Two possible GN&C architectures are also presented to illustrate and 

compare practical solutions for PFF. 

Dynamics Model Formulation and Inertial Measurement Models 

The relative flight dynamics of two spacecraft in formation has been previously studied by 

numerous authors with applications to formation flying technology development, as summarized 

by Calhoun10. These generally fit into two categories. The formation dynamics in a close orbit to a 

single gravitational body (e.g. low Earth orbit) and deep space applications. We use Luquette’s 

formulation6-14 of the relevant dynamics in an inertial reference as a basis for the GN&C design 

and analysis since many VT missions are in deep space applications. The dynamic equations of 

motion in a simplified form for the Optics spacecraft with respect to the Detector spacecraft, given 

herein, are a summary of the results from Calhoun.10 They include modifications to Luquette’s 

formulation to include additional gravitational bodies and to develop the equation parameters in 

terms of the Detector (Follower) spacecraft reference. This provides for ease of implementation in 

an autonomous leader/follower formation architecture with the Detector spacecraft serving as the 

follower. The dynamics model also includes three-axis attitude dynamics for both Optics spacecraft 

and Detector spacecraft.  

The translational dynamics of relative motion can be expressed in term of the relative position 

of Detector spacecraft with respect to the Optics spacecraft (Note: [I] represents the 3x3 identity 

matrix).5 

𝑥̈⃑ = − ∑ 𝜇𝑖
‖𝑟𝑖𝐷‖3

𝑛

𝑖=1
 ([𝐼]  −  3𝑟𝑖𝐷𝑟𝑖𝐷

𝑇) 𝑥⃑ +  Δ𝑓𝑠𝑜𝑙𝑎𝑟 +  Δ𝑓𝑝𝑒𝑟𝑡 + 𝑢⃑⃑𝑡ℎ𝑟𝑢𝑠𝑡,𝐷 −  𝑢⃑⃑𝑡ℎ𝑟𝑢𝑠𝑡,𝑂   (8) 

Since these equations of motion for dual-spacecraft relative dynamics are developed in a general 

linear parametric form, they are suitable for design and evaluation of VT GN&C systems in a 

variety of applications. This model can be applied to control and estimation during all phases of a 

typical dual-spacecraft formation flying mission, including formation reorientation, initial 

formation alignment acquisition, and precision alignment operations. Formation flying for the VT 

in a leader/follower architecture is facilitated by using this form of the relative dynamics, since 1) 

the equations are expressed in an inertial reference frame and 2) the gravitational body ephemeris 

data are expressed relative to the Detector spacecraft (follower) reference. 
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A linear time-invariant (LTI) form of Eq. (8), is formulated by expressing the relative position 

state, 𝑥⃑, in terms of a perturbed range state, 𝛿𝑅, and a nominal reference range, 𝑅⃑⃑𝑟𝑒𝑓, between the 

two spacecraft for the virtual telescope configuration. 

𝑥⃑ =  𝑅⃑⃑𝑟𝑒𝑓 +  𝛿⃑𝑅                                                                 (9) 

𝛿𝑅
̈ =  Γ𝐺𝐺  𝛿𝑅 + Γ𝐺𝐺  𝑅⃑⃑𝑟𝑒𝑓 +  𝑢⃑⃑⃑𝑅                                                  (10) 

A gravity gradient parameter matrix, Γ𝐺𝐺, is expressed in terms of fixed parameters referenced to 

the Detector spacecraft.  

                      Γ𝐺𝐺 = − ∑ 𝜇𝑖

‖𝑟𝑖𝐷
𝑟𝑒𝑓‖

3

𝑛

𝑖=1

 ([𝐼]  −  3𝑟̂𝑖𝐷
𝑟𝑒𝑓[𝑟̂𝑖𝐷

𝑟𝑒𝑓]
𝑇

)                               (11) 

 Eq. (10) and Eq. (11) then form a LTI dynamics model. They represent the relative dynamics 

of dual-spacecraft formation when considering small displacements from a fixed relative reference 

trajectory. Approximations used to arrive at this final linear form are particularly applicable to a 

tightly-controlled inertially-configured dual-spacecraft formation in a deep space environment. In 

these applications, Γ𝐺𝐺 is nearly constant during the short time periods associated with scientific 

observations. 

The complete dynamics model for the dual-spacecraft formation alignment GN&C will also 

include the rigid body attitude equations of motion19, for both Detector spacecraft and Optics 

spacecraft, as given in the general form of Eq. (12) and Eq. (13). This results in a nine DoF state 

model which is coupled through optical measurements of relative position, when considering sensor 

locations not coincident with respective spacecraft center of mass, as given in Eq. (5) and Eq. (6). 

𝑞̇ = 1
2Ω̃𝑞                                                                (12)                                                                          

𝜔̇⃑⃑⃑ = 𝐼𝑆
−1(𝜔⃑⃑⃑  × 𝐼𝑆 𝜔⃑⃑⃑) +  𝑇⃑⃑                                                       (13) 

Measurement models for GN&C design may also include those for rate gyros, Eq. (14), and 

accelerometers, Eq. (15) 10. 

𝜃̇ = 𝜔⃑⃑⃑𝑚 − 𝑏⃑⃑𝜔  +  𝜈𝜔                                                    (14) 

𝛿̈𝑚   = ([𝐼] −  𝑟̃𝐴𝐼𝑆
−1𝑟̃𝑇 𝑚S)𝑢⃑⃑FT0

+ ([𝐼] −  𝑟̃𝐴𝐼𝑆
−1𝑟̃𝑇 𝑚S)𝛿𝑢⃑⃑⃑⃑⃑FT  

  +  ([𝐼] −  𝑟̃𝐴𝐼𝑆
−1𝑟̃𝐸𝑚𝑆)𝑢⃑⃑FE +  𝑏⃑⃑𝐴  +  𝜈⃑𝐴                              (15) 

The complete framework for the VT GN&C design includes dynamics models, Eq. (8)-(13), 

measurement models for optical sensors, Eq. (1)-(7), and inertial sensors, Eq. (14)-(15).  

One should note, when using the quaternion kinematics of the form in (12) for model-based 

filter design, care should be taken to avoid potential numerical issues due to the implicit 

normalization constraint of the unit quaternions used for attitude representations. One 3-parameter 

representation used to avoid this constraint is known as Modified Rodriguez Parameters, considered 

by Karlgaard20 and Crassidis21. One example of a quaternion based filter is the Multiplicative 

Extended Kalman Filter (MEKF)22,23,24. The MEKF addresses the quaternion constraint issue by 

estimation of a 3-parameter small angle attitude state and the use of a multiplicative quaternion 

residual. A reset operation is used to preserve the unit norm of the reference quaternion. The MEKF 

is a practical solution when using quaternion output star trackers, as well as having other 

computation and conceptual advantages, as discussed in Markley23,24.  
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GN&C Architectures for VT PFF 

The GN&C system for the VT PFF is an example of a distributed spacecraft system involving 

control of two spacecraft that function together to form a single scientific measurement system. 

Depending on the placement of PFF sensors and actuators significant spacecraft dynamic coupling 

could result in the GN&C system, as shown in the measurement and dynamics models provided in 

the previous section. Two different approaches to GN&C architecture design illustrate this 

coupling.  

The Leader/Follower architecture, shown in Figure 4, provides a representative PFF sensor and 

actuator placement as one possible GN&C configuration. The Detector spacecraft is the actively 

controlled element for the VT PFF, the Optics spacecraft (Leader) would perform only 3-axis 

attitude determination and control, and the Detector spacecraft (Follower) would perform 3-axis 

attitude and 3-axis relative position control. A full-state estimator (nine DoF) that processes all 

measurements serves to consolidate the relative state estimation onboard the Detector spacecraft. 

The Detector spacecraft requires thrusters for relative position control so it is natural to also use 

thrusters for attitude control in a 6-axis configuration, thus avoiding the need for reaction wheels 

(RW) for attitude control. Attitude control for the Optics spacecraft could optionally use RW or 

thrusters. A set of three-axis thrusters would anyway be included for momentum unloading when 

using the RW, since magnetic torqueing is not available in deep-space orbit applications. 

This leader/follower architecture has two possible deficiencies. First, due to attitude coupling in 

the optical metrology measurements, a communication link is required to send attitude data from 

Optics spacecraft to Detector spacecraft for use in the full-state navigation filter. This may suffer 

from possible uncertain transmission delay and timing synchronization across the inter-spacecraft 

communication link. Second, the thruster system for the Detector spacecraft is required to perform 

simultaneous 6-axis control. Providing a feasible thruster configuration that sufficiently decouples 

all axes for precision full-state control may be difficult. The leader/follower architecture shown in 

Figure 4 includes a set of 24 thrusters in a 6-axis decoupled configuration.  

An alternate partitioned architecture that addresses these concerns is also shown in Figure 4. In 

this case, the control and estimation is partitioned among the two spacecraft and the optical sensors 

are located to avoid the multi-platform attitude coupling in the measurement process. The Optics 

spacecraft controls the 3-axis attitude and relative range, and the Detector spacecraft controls the 

3-axis attitude and transverse alignment only. The decoupling of laser alignment measurements on 

 

  

Figure 4.  Representative GN&C Architectures for the VT 
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the Detector spacecraft and laser ranging measurements on the Optics spacecraft is achieved by 

proper placement of respective optical elements. First, laser beacons for both alignment and ranging 

measurements are pointed to corner cube reflectors mounted on the opposing spacecraft. The return 

beams are acquired at collocated detectors, respectively. The attitude dependency in the return 

beam, arising from the 𝑃̃𝐿𝐵 term in Eq. (5), is eliminated since the elements of  in Eq. (5) are 

equal to 0 when using corner cubes. The remaining attitude dependent coupling between spacecraft 

in Eq. (5) is eliminated by locating the corner cubes for laser alignment return (on the Optics 

spacecraft) in the x-y plane, and the corner cubes for the laser ranging return (on the Detector 

spacecraft) along the z axis. 

CASE STUDY: GN&C DESIGN FOR A HELIOPHYSICS MISSION 

The model-based framework for GN&C design, as developed in this work, was applied to an 

example problem to illustrate the performance trades inherent in dual-spacecraft PFF for VT 

applications. The dual-spacecraft PFF technology has many applications in various scientific 

investigations that require a long baseline VT, such as in high energy imaging1-4. One such proposed 

heliophysics VT mission uses a photon sieve for high resolution solar imaging25. The photon sieve 

is a type of diffractive optics for producing narrowband focused images.  Achieving high resolution 

diffraction-limited imaging in high energy wavelengths requires long baselines, large precision 

manufactured optics, and precise alignment and range control stability25. The GN&C requirements 

representative of a milli-arc-sec level photon sieve application are given in Table 1. These precise 

requirements consequently place demanding specifications on GN&C architectures and sensors, 

particularly on optical metrology16 needed for precise alignment sensing. The specifications for the 

compliment of sensor and actuators used in this study are also provided in Table 1. These values 

represent the approximate levels needed to achieve the given science requirements. 

Table 1.  Photon Sieve VT Alignment Requirements and Component Specifications 

Parameter Requirement (3)  Component Specification (3) 

Image Smear 6 microns  Laser Alignment  30 microns 

Depth of Field 1 mm  Laser Ranging 0.5 cm 

spacecraft 

separation  

200 m  Microthruster 5 N-sec (min Impulse) 

Pointing Stability  

(Optics 

spacecraft) 

5 milli-arc-sec (Sun) 

10 arc-sec (roll) 

 Fine Sun Sensor 30 milli-arc-sec 

Pointing Stability 

(Detector 

spacecraft)  

10 arc-sec  Star Tracker 6 arc-sec (transverse) 

30 arc-sec (boresight) 

 

GN&C Mode Design 

The case study scenario includes transitioning the PFF system through three representative 

GN&C modes (Acquisition, Coarse-Align, and Fine-Align), as shown in Figure 5. This is a staged 

approach to acquire the laser beacons within the respective detector elements of the precision 

alignment configuration. Acquisition mode uses radio-based range and bearing measurements for 

relative navigation, providing a large relative range envelope for initial operation. The end state of 

this initial acquisition is alignment of the two spacecraft, placing the Optics spacecraft with the 

field of view of a camera-based imager mounted on the Detector spacecraft for relative navigation. 

This imager provides alignment precision of less than 3 millimeters in the Coarse Align mode. 

Precision alignment (< 6 microns) is achieved in the Fine Align mode using the laser alignment 

sensor (detector size = 1 cm). The sensor compliment and measurement error for each PFF mode 

is given in Table 2. The measurement error statistics were also used to initialize the states and error 
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covariance for navigation filter. This mode design illustrates a practical approach for achieving fine 

alignment from an initial acquisition using radio-based ranging navigation.  

Figure 5 shows the result of a single leader/follower case, illustrating the PFF cross-range 

alignment performance in each GN&C mode. The simulation is started in the Acquisition mode 

with sun pointing attitude and a 20 m separation along VT axis and 4 m transverse error. The initial 

velocity in each axis was set to 2 cm/sec. The control response (not shown) converges to a 200 m 

separation command after about two hours. During this time the navigation filter converges to less 

than 0.5 m. After three hours the PFF mode is set to Coarse Align using an alignment camera to 

track two beacons mounted on the Optics spacecraft (beacons separated by 2 m on a target 

structure). This provides a measure of range and bearing that results in cross-range navigation error 

convergence to mm level after one hour. After three hours in Coarse Align mode the PFF system 

is set to Fine Align mode and the laser ranging and alignment sensors are used to converge the filter 

solution to less than 6 microns (3) transverse error. The navigation filter state and covariance are 

initialized using radio range (60 cm (3s) and bearing (30 deg (3)) measurements. The filter error 

covariance bound (3), shown in dashed lines, illustrates reasonable filter convergence to steady-

state during each mode transition.  

 

Table 2.  Case Study: Sensor Compliment and Measurement Errors (3) for PFF Modes  

GN&C Hardware Acquisition Coarse Align Fine Align 

Radio Ranging 60 cm   

Radio Bearing 30 deg   

Alignment Camera   50 arc-sec  

Laser Ranging   1 cm 

Laser Alignment   30 m 

Star Tracker 6 arc-sec (transverse) 

30 arc-sec (boresight) 

6 arc-sec (transverse) 

30 arc-sec (boresight) 

6 arc-sec (transverse) 

30 arc-sec (boresight) 

Fine Sun Sensor    10 milli-arc-sec 

 

Figure 5.  Leader/Follower Case: Separation through Stabilization at 200m baseline 
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Monte Carlo Study of GN&C Architectures 

The performance of the Leader/Follower and Partition GN&C architectures, described in the 

previous section, were analyzed in a high-fidelity Matlab/Simulink simulation with the complete 

nine DoF dynamics. The PFF scenario, as represented by a single case in Figure 5, was simulated 

in a Monte Carlo (MC) analysis for each alternative architecture. MC runs include variations in 

mass properties (given in Table 3) as well as initial navigation state/covariance errors, truth model 

initial condition error, and sensor model errors, all consistent with the measurement errors shown 

in Table 2 for the Acquisition mode. The state estimation was implemented as an Extended Kalman 

Filter using a continuous form for state propagation and discrete measurement updates26. 

Measurement updates were performed sequentially to avoid numerical issues associated with 

computation of large matrix inverses. Separate PID controllers are used for attitude and relative 

position states. While other choices of GN&C design algorithms are possible for this application, 

the standard methods used for this study are easy to implement and have good computational 

characteristics. They provide a good baseline approach for comparison of different PFF 

architectures. All measurement and actuator models include first-order Markov processes to 

represent systematic errors within the control bandwidth, in addition to random noise at the levels 

provided in Table 1. This modeling approach facilitates assessment of the GN&C system’s 

performance robustness in the presence of unmodeled errors. The GN&C system operates at a 10 

Hz update for both navigation filter and control actuation. 

 

         Table 3.  Case Study: Mass Properties and Monte Carlo Variations          

Parameter Nominal Value (kg) Variation (3) 

Optics spacecraft Mass 200 kg +/- 10%  

Detector spacecraft 

Mass 

400 kg +/- 10% 

Optics spacecraft 

Radius of Gyration 

1 m +/- 10% 

Detector spacecraft 

Radius of Gyration 

1 m +/- 10% 

 

Figure 6 shows lateral alignment error results from 400 cases, along with 95% confidence 

ellipses, for both GN&C architectures (Leader/Follower (blue), Partition (red)). These results are 

an ensemble average taken at the end of a 9 hour scenario after transitioning though each PFF mode 

as shown in Figure 5. MC results indicate that errors in transverse axes are uncorrelated, which is 

expected due to lack of significant cross-axes coupling in state dynamics and measurement models 

for these architectures. Results indicate that transverse alignment errors are somewhat better for the 

Partition architecture. Decoupling of the laser alignment measurement from the Optics spacecraft 

attitude, by the proper positioning the corner cube reflectors, results in improved transverse 

alignment observability in the Partition architecture. The Partition architecture performance meets 

the alignment requirements for the Photon Sieve application as listed in Table 1, illustrating the 

improvement obtained from model-based estimation over unfiltered laser alignment measurements. 

Using a Kalman filter framework the error is reduced by approximately a factor of five over the 

baseline position sensor measurements in this case.  
Figure 6 also shows the total impulse required for PFF over a five year mission for both 

architectures. Total impulse required to maintain alignment is significantly higher for the 

Leader/Follower architecture. The partitioned GN&C architecture requires about 35% less total 

impulse because the Optics spacecraft, which performs range control, is half of the mass of Detector 

spacecraft. Performance comparison of these two alternative PFF architectures demonstrates the 
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system trades that result from the measurement/state coupling and control actuator partitioning 

inherent in the dual-spacecraft PFF GN&C system presented in this paper. 

Figure 6.  Performance Results of Two Representative GN&C Architectures for the VT 
 

CONCLUSION 

A general framework for dual-spacecraft PFF GN&C architecture design has been developed 

with specific application to VT missions. The development includes models for dynamics and 

measurement processes for systems that employ non-collocated sensors and actuators, including 

laser-based alignment and ranging systems, optical imaging sensors, and inertial measurement units 

(IMU), as well as microthrusters. These models are found to be applicable to short baseline VT 

applications of near term interest (spacecraft separation range: 50 – 500m). Their usefulness would 

be reduced as the spacecraft separation increases relative to size of each spacecraft. A GN&C 

performance assessment is given for a representative Heliophysics PFF imaging mission concept 

with 200-400 kg satellites at 200 m separation. The study results reveal how data from relative 

position sensors can be employed in a Kalman filter framework to significantly improve alignment 

estimation performance over the baseline position sensor measurements. The case study also 

provides a comparison of two different GN&C formation flying architectures, illustrating the 

performance trades inherent in the choice of system architecture for PFF in the VT application.  
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NOTATION 

𝑏⃑⃑𝐴 Accelerometer Measurement Bias  

𝑏⃑⃑𝜔 Gyro Measurement Bias 

𝑚S Spacecraft Mass 

q               Attitude Quaternion 

𝑟𝑖𝐷  Detector Spacecraft Position relative to ith Central Body 

𝑟𝐴 Accelerometer Location Vector relative to Mass Center 

𝑟𝐸 Environmental Disturbance Action Point Location Vector relative to Mass Center 

𝑟𝑇 Thruster Location Vector relative to Mass Center 
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𝑢⃑⃑FE Environmental Disturbance Specific Force on Follower Spacecraft 

𝑢⃑⃑FT0
 Nominal Thruster Specific Forces for Control of Follower Spacecraft 

𝑢⃑⃑𝑅 Leader/Follower Total Differential Specific Force 

𝑢⃑⃑𝑡ℎ𝑟𝑢𝑠𝑡,𝐷 Thruster Specific Force on Detector Spacecraft 

𝑢⃑⃑𝑡ℎ𝑟𝑢𝑠𝑡,𝑂 Thruster Specific Force on Optics Spacecraft 

x  Relative Spacecraft Position 

[I]             Identity Matrix (3x3) 

𝐼𝑆 Spacecraft Inertia 

𝑃⃑⃑𝐵 Laser beacon Position relative to Optics spacecraft Mass Center 

𝑃⃑⃑𝐶  Camera-based sensor Position relative to Detector spacecraft Mass Center 

𝑃⃑⃑𝐷 Detector Assembly Position relative to Detector spacecraft Mass Center 

𝑃⃑⃑𝑂 Optics Assembly Position relative to Optics spacecraft Mass Center 

𝑃⃑⃑𝐶𝑂 Camera-based sensor Position relative to Optics spacecraft Mass Center 

𝑃⃑⃑𝐷𝑂 Detector Assembly Position relative to Optics spacecraft Mass Center 

𝑇⃑⃑ Spacecraft External Torque 

𝛿̈𝑚
 Spacecraft Measured Acceleration  

𝜈𝜔 Gyro Measurement Noise 

𝜈𝐴 Accelerometer Measurement Noise 

i Gravitational Constant for ith Central Body 

𝜃⃑ Attitude Vector  

O Optics spacecraft to Astrometric Sensor boresight alignment angles  
G Guide Star to Astrometric Sensor boresight alignment angles 
𝑅  Relative Spacecraft Alignment Angles 

𝜔⃑⃑⃑ Angular Rate Vector  

𝜔⃑⃑⃑𝑚
 Measured Angular Rate Vector  

Δ𝑓𝑠𝑜𝑙𝑎𝑟  Differential Solar Pressure Specific Force  

Δ𝑓𝑝𝑒𝑟𝑡 Differential Gravitational Perturbations 

Ω̃ Angular Velocity four-dimensional skew-symmetric Matrix  
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