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Abstract: A decision framework is developed for quantifying the economic value of information "!

(VOI) from the Gravity Recovery and Climate Experiment (GRACE) satellite mission for #!

drought monitoring, with a focus on the potential contributions of groundwater storage and soil $!

moisture measurements from the GRACE Data Assimilation (GRACE-DA) System. The study %!

consists of: (a) the development of a conceptual framework to evaluate the socioeconomic value &!

of GRACE-DA as a contributing source of information to drought monitoring; (b) structured '!

listening sessions to understand the needs of stakeholders who are affected by drought (!

monitoring; (c) econometric analysis based on the conceptual framework that characterizes the )!

contribution of GRACE-DA to the US Drought Monitor (USDM) in capturing the effects of *!

drought on the agricultural sector; and (d) a demonstration of how the improved characterization "+!

of drought conditions may influence decisions made in a real-world drought disaster assistance ""!

program. Results show that GRACE-DA has the potential to lower the uncertainty associated "#!

with our understanding of drought, and that this improved understanding has the potential to "$!

change policy decisions that lead to tangible societal benefits. "%!

 "&!
Keywords: Drought; GRACE; Groundwater; Soil moisture; Value of information.  "'!
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1.! Introduction "(!

Droughts are some of the costliest natural disasters in the United States. Average annual losses ")!

that are attributable to drought nationwide are estimated to be in the range of $6 to $8 billion "*!

(FEMA 1995). The drought in California, which imposed a cost of US$ 2.7 billion on the state in #+!

2015 (Howitt et al. 2015), serves as a reminder of the losses that these disasters can impose on #"!

economic sectors. Current federal, state, and municipal policies seek to provide assistance to ##!

minimize the economic and environmental impacts of droughts. However, identifying the #$!

optimal allocation of these financial resources is complicated because droughts impose societal #%!

costs unevenly across the landscape and over time. For this reason, it is desirable for decision #&!

makers in drought management to have the best possible understanding of the location, timing, #'!

and severity of droughts.  #(!

Decision makers often rely on a template or model that monitors current drought #)!

conditions to inform management actions. In the United States, many government programs that #*!

allocate resources for drought assistance utilize the US Drought Monitor (USDM). The USDM is $+!

an expert-based risk map that provides information about the severity of droughts across the $"!

country on a weekly basis1 and is used to inform major drought management decisions. These $#!

maps are used to determine farmer eligibility for federal drought assistance programs and issue $$!

drought emergency declarations. However, the USDM represents the actual state of the $%!

environment in a simplified manner. In other words, a USDM severity categorization for a given $&!

location in a given week is estimated with a mean and variance, and the size of the variance can $'!

affect the expected socioeconomic benefits of management decisions. For example, a large $(!

variance in USDM categorizations can result in potentially costly misclassifications to receive $)!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 The USDM map for any given week can be accessed at http://droughtmonitor.unl.edu/. 
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government program assistance. Modifications to the USDM that reduce the uncertainty $*!

associated with an estimate of current drought conditions can lead to improved societal outcomes %+!

in the form of reduced economic losses due to drought. %"!

Studies have argued that the USDM could describe drought conditions more %#!

comprehensively and more objectively if additional soil moisture and groundwater information %$!

were incorporated into the map (Houborg et al. 2012). In this paper, a multi-method framework %%!

is developed for quantifying the economic value of information (VOI) derived from the National %&!

Aeronautics and Space Administration’s (NASA) Gravity Recovery and Climate Experiment %'!

(GRACE) satellite mission for drought monitoring. We evaluate the potential contribution of %(!

groundwater storage and soil moisture measurements from the GRACE Data Assimilation %)!

(GRACE-DA) System to the USDM. The analysis consists of four main components. First, a %*!

statistical decision framework is presented that utilizes a Bayesian updating procedure to &+!

establish the informativeness of a particular combination of scientific data and indicators that are &"!

organized into an information structure for a specific decision (Lawrence 1999). This framework &#!

demonstrates analytically that the value of information from GRACE-DA increases if &$!

incorporation of this information into the USDM can increase the correlation between the USDM &%!

drought category assigned to a location and the actual drought intensity in that location. !Second, &&!

we conducted structured listening sessions to understand the needs of stakeholders who are &'!

affected by drought monitoring. Third, an econometric analysis is performed to test whether &(!

there are significant statistical improvements in the prediction of county drought impacts if &)!

models include GRACE-DA explanatory variables. We use these models to predict the effect of &*!

drought on the agricultural sector and test whether models that include GRACE-DA information '+!

exhibit better measures of goodness of fit compared to models that do not include GRACE-DA '"!
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information.  Fourth, we demonstrate how the improved characterization of drought effects '#!

afforded by GRACE-DA information may influence decisions made in a real-world drought '$!

disaster assistance program. Our example addresses the US Department of Agriculture’s '%!

Livestock Assistance Grant Program (LAGP), a state block fund designed to recover forage '&!

production losses resulting from the 2006 summer drought.  ''!

2.! Bayesian decision framework '(!

The Bayesian decision framework described in this section formalizes how GRACE-DA drought ')!

indicators can be employed to analyze decisions in the agricultural sector. Bayesian models '*!

previously have been applied to decisions in the agricultural sector in a variety of ways. (+!

Examples include: Bradford and Kelejian (1977) employed a two-period Bayesian statistical ("!

model to evaluate the effect of the quality of information on decisions associated with weather (#!

forecasts for an agricultural harvest. Crean et al. (2014) applied state-contingent production ($!

theory in a Bayesian model to assess the value of seasonal climate forecasts for long-term farm (%!

planning. Bayesian models have also been employed in regulatory analyses. Bernknopf et al. (&!

(2001) demonstrate the VOI of applying regional scale nonpoint source groundwater ('!

vulnerability assessments for pesticide use, crop yield, and groundwater treatment regulations. ((!

2.1.Decision model ()!

The value of the GRACE-based information depends on (a) what is at stake as an outcome of the (*!

decision and (b) how uncertain is the decision maker’s information. Estimation of the economic )+!

impact requires an explanation of how the decision maker’s information changes as a result of )"!

the acquisition of new information and a way to quantify that value. Figure 1 illustrates how the )#!

Bayesian decision approach can be applied in the context of a drought disaster assistance )$!

program. The influence diagram includes: (1) a random variable of the possible states of the )%!
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environment S, (2) a decision represented as a management action A, (3) an expected payoff )&!

associated with a specific combination of a state of the environment and an action ! "# $ , and )'!

(4) and a random variable of the state of the environment observations D.  )(!

Both S and D are uncertain quantities and are probability densities that are denoted by ))!

oval nodes in Figure 1. These probabilities are characterized in the next section. A management )*!

action shown as a rectangular node in Figure 1 is a decision and when combined with the *+!

conditional probability % & ' , yields a probabilistic payoff, which the decision maker *"!

maximizes at the expected value. The payoff shown as a hexagonal node in Figure 1 is an *#!

outcome of an action A that results from a decision and an information structure. For a given *$!

decision problem, information structures can provide different qualities of information that will *%!

lead to potentially different expected payoffs that can be ranked (Laffont 1989). A USDM *&!

information structure has greater informativeness if the correlation coefficient increases between *'!

S and D with the addition of GRACE-DA indicators (Lawrence 1999). The comparison of the *(!

information structures provides an incremental economic value of the change in the quality of the *)!

input to a decision (Qian et al 2009, Gossner 2000). **!

The following two sections formally describe how incremental VOI can be generated by "++!

adding GRACE-DA indicators to the USDM. "+"!

2.2. Probabilities for the Bayesian approach "+#!

The Bayesian approach is a way to evaluate whether a decision maker’s probability density over "+$!

an outcome of interest will change as a result of new information (Lawrence 1999). Prior to "+%!

receiving new information, the decision maker’s belief regarding the probability of occurrence is "+&!

referred to as the decision maker’s prior belief regarding the probability density. Upon receipt of "+'!

new information, the decision maker makes an observation that provides an improvement in the "+(!
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prediction of the outcome of interest. This expected outcome is referred to as the decision "+)!

maker’s posterior belief regarding the probability of occurrence.  "+*!

Let the continuous random variable &(#) represent the intensity of drought in county * in ""+!

week +. The decision maker is uncertain about the value of &(#), but has beliefs about this value. """!

For simplicity, suppose the decision maker considers &(#) to be normally distributed with mean ""#!

,-.#/ and variance 01.#/
2 . The decision maker also expects to obtain information from the USDM, ""$!

which will assign a drought category 3(#) to county * in week +. Based on the USDM information ""%!

from previous weeks, '(#) is assumed to be continuous and normally distributed with mean ,4.#/ ""&!

and variance 04.#/
2 . ""'!

The decision maker believes that &(#) and '(#) are correlated. Following Lawrence (1999), ""(!

the decision maker’s beliefs are estimated as a bivariate normal distribution: "")!

&(#)# '(#) 56578 ,-.#/ # 0-.#/
2 9 ,4.#/ # 04.#/

2 9 : #      (1) ""*!

where : is the correlation coefficient between the two variables.  "#+!

Now, suppose that the decision maker observes that the USDM has assigned drought "#"!

category 3(#)5 to county * in week +. The distribution of &(#), conditional on observing '(#) ; 3(#), "##!

is given by: "#$!

&(#) '(#) ; 3(#) 5658 ,-.#/ < :
=>.#/

?

=@.#/
? 3(#) A ,4.#/ # B A :2 0-.#/

2 C   (2) "#%!

This is the decision maker’s posterior probability distribution, where the conditional "#&!

posterior mean is equal to: "#'!

D &(#) '(#) ; 3(#) ; ,-.#/ < :
=>.#/

?

=@.#/
? 3(#) A ,4.#/ #     (3) "#(!

and the conditional posterior variance is equal to: "#)!
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E$F &(#) '(#) ; 3(#) ; B A :2 0-.#/
2 C       (4) "#*!

Equation 4 shows that the conditional posterior variance is decreasing in the correlation "$+!

coefficient5:. This relationship implies that any change in the USDM that increases :, i.e. the "$"!

correlation between the USDM drought category assigned to a county and the actual drought "$#!

intensity in that county, can reduce the variance that the decision maker faces. It follows that if "$$!

we are able to show that the incorporation of GRACE-DA in a statistical model of drought is "$%!

able to produce a new set of drought categories '(#)
G  (GRACE-DA categorical variables) that "$&!

correlate better with &(#), the posterior variance is smaller than the variance associated with "$'!

current USDM drought categories '(#).  "$(!

2.3.Payoff and VOI "$)!

The contributions of an increase in!the correlation between USDM drought categorizations and "$*!

actual drought intensity on value for the decision maker is characterized through a payoff "%+!

function. The most effective decision is to use the expected value (first moment) of a probability "%"!

distribution of payoffs (Berger 1985). Deviation away from the expected value in either direction "%#!

is a loss that can be represented as the variance (second moment) of a probability distribution "%$!

(Freixas and Kihlstrom 1984). The symmetric loss associated with an increase in the deviation "%%!

from the expected value increases as the square of the error for USDM drought severity "%&!

classification. There is a greater penalty or economic impact derived from the decision as the "%'!

variance of the probability distribution becomes larger. To represent the impact of the "%(!

misclassification, we apply a quadratic loss function in the eligibility selection decision. Suppose "%)!

that the risk neutral decision maker’s payoff associated with an action H(#) for county * in week + "%*!

can be represented as being quadratic in the level of the action and the intensity of drought &(#): "&+!

! &(#)# H(#) ; IJ < I2&(#) < IKH(#) < IL&(#)H(#) < IM&(#)
2 A INH(#)

2 #   (5) "&"!
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where IN O P. In the context of using the USDM to make decisions about drought assistance, "&#!

H(#) could signify the amount of drought assistance allocated to county * in week +, while the "&$!

payoff ! &(#)# H(#)  could represent the value of losses in the agricultural sector that were avoided "&%!

given that a county experienced a drought of intensity &(#) and received drought assistance in the "&&!

amount of H(#).2 Derivation of the first-order condition shows that the optimal prior choice is "&'!

H(#)
Q ;

RSTRUV>.#/

2RW
, while the optimal conditional choice is H(#)

Q '(#) ; 3(#) ; RSTRUD -.#/ 4.#/XY.#/

2RW
. "&(!

Given the quadratic payoff function in Equation 5, the decision rule is linear in the expectation of "&)!

&(#). Substituting the optimal decision rules into the payoff function yields the value of the prior "&*!

and conditional decisions: "'+!

Z$[
\.#/

D ! &(#)# H(#) ; ]J D &(#) '(#) ; 3(#)
2

< ]2D &(#)
2 '(#) ; 3(#) < ]KD &(#) '(#) ; 3(#) < ]L (6) "'"!

where ]J, ]2, ]K, and ]L are constants. It can be shown that the value of information is "'#!

(Lawrence 1999): "'$!

E^_ ; ]J D &(#) '(#) ; 3(#)
2

A ,-.#/
2  ; ]J 0-.#/

2 A E$F &(#) '(#) ; 3(#) C (7) "'%!

Because E$F &(#) '(#) ; 3(#) ; B A :2 0-.#/
2  if &(#)# '(#)  has a bivariate normal distribution, it "'&!

follows that: "''!

E^_ ; ]J :20-.#/
2 C          (8) "'(!

As a result, the VOI is proportional to the variance of drought and the square of the correlation "')!

coefficient. Thus, the value of information increases with :2. "'*!

3.! Application background "(+!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 Payoffs (!) might be influenced by drought assistance allocations (H(#)) in several ways. For example, drought 
assistance may allow agricultural producers to undertake mitigation actions that reduce the impact of drought on 
crop or livestock output. Drought assistance funds may also be used directly to enhance farm revenues, which in 
some cases may prevent higher debt or bankruptcy on the part of the producer. 
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3.1.The US Drought Monitor "("!

The USDM classification scheme identifies general drought areas, labelling droughts by "(#!

intensity, with Category D1 being the least intense and Category D4 being the most intense. "($!

Category D0 is used to indicate drought watch areas. The categorizations for a USDM map are "(%!

the result of a well-documented process (Svoboda et al. 2002) conducted by climatologists from "(&!

the National Oceanic and Atmospheric Administration (NOAA), the US Department of "('!

Agriculture (USDA), and the National Drought Mitigation Center (NDMC). "((!

In addition to reviewing literature describing the USDM (Svoboda et al. 2002), a series of "()!

structured listening sessions were conducted with USDM authors to better understand how "(*!

drought severity categorizations are assigned and to what extent GRACE-DA information ")+!

influence these categorizations. The right portion of the information flow diagram in Figure 2 ")"!

depicts the process by which USDM authors, who take turns serving as the lead author each ")#!

week, evaluate a suite of objective inputs. One set of inputs is summarized in an explicitly ")$!

weighted combination of inputs known as the Objective Blend of Drought Indicators. USDM ")%!

authors also refer to higher-resolution information including field observations. In addition to ")&!

these objective inputs, the authors deliberate with local experts to assess drought conditions. This ")'!

regional and local expert input and dialogue allow for identification of localized and severe ")(!

droughts experienced by communities. During the listening sessions, we found that most USDM "))!

authors are aware of GRACE-DA and some use it as a data source for verification purposes. The ")*!

USDM relies on both conventional water supply metrics with long archives and remotely sensed "*+!

data as inputs, which are transformed into categorizations or indicators that are simple enough "*"!

for practical use.  "*#!
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The USDM is used as a screening instrument by various USDA programs to determine "*$!

who is eligible for financial assistance during and after a drought disaster. An example of the "*%!

application of the USDM for a specific drought decision is stated in the USDA Agricultural Act "*&!

of 2014 for the LAGP. To be eligible, a county must have experienced exceptional (USDM "*'!

category D4) or extreme (USDM category D3) drought during March 7, 2006 to August 31, "*(!

2006.   "*)!

The USDM information structure that supports eligibility decisions can contain a variety "**!

of different indicators that vary over space and time.  Using Equation 8, alternative versions of #++!

the inputs to the USDM can be indexed by their relative informativeness. By being able to index #+"!

various combinations of indicators and other input data, it is possible to rank alternative #+#!

information structures according to their VOI. A case can be made for a county level application #+$!

of reducing the societal cost of drought severity misclassification by adding GRACE-DA #+%!

variables to the USDM.  #+&!

The VOI of GRACE observations consists of the gains that result from reducing the #+'!

uncertainty in decisions that are based on incremental information. In this context, information #+(!

from GRACE-DA could improve the correlation between the message (i.e., the USDM drought #+)!

severity category) and the outcome (i.e., eligibility for government assistance or insurance), #+*!

leading to a more cost-effective allocation of assistance funds. #"+!

3.2.The GRACE-DA System #""!

The GRACE satellites are sensitive to variations in water stored at all levels above and within the #"#!

land (Rodell and Famiglietti 2001). Through a series of processes that include removal of the #"$!

atmospheric and oceanic influences and elimination of correlated errors, scientists are able to use #"%!

GRACE’s precise observations of gravitational effects on the orbits of its two satellites to #"&!
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produce monthly maps of terrestrial water storage anomalies (deviations from the long term #"'!

mean) (Swenson and Wahr 2006; Landerer and Swenson 2012).  However, the coarse spatial #"(!

(>150,000 km2) and temporal (monthly) resolutions of the maps limit their direct applicability #")!

for drought monitoring, and the vertically integrated nature of the measurements does not allow #"*!

for distinction between anomalies related to snow, surface water, soil moisture, or groundwater ##+!

(Li et al. 2012; Houborg et al. 2012). The left portion of Figure 2 highlights relevant data sources ##"!

and the steps required to turn low resolution GRACE terrestrial water storage anomaly data into ###!

useful drought indicators as an additional informational component of the USDM (Houborg et al. ##$!

2012). In order to increase resolution, disaggregate the measurement vertically, and eliminate the ##%!

time lag associated with GRACE data releases, NASA scientists developed GRACE-DA ##&!

(Zaitchik et al. 2008). GRACE-DA uses ensemble Kalman smoother type data assimilation to ##'!

integrate GRACE data with ground- and space-based meteorological inputs (e.g., precipitation, ##(!

solar radiation, etc.) within a Catchment Land Surface Model (Koster et al. 2000). ##)!

The GRACE-DA system produces estimates of soil moisture and groundwater storage ##*!

variations that are used to generate probabilistic drought indicators. These indicators are defined #$+!

relative to the baseline cumulative distribution function of wetness conditions during 1948-2009 #$"!

as simulated by the Catchment model. Three indicators are produced: (1) a surface soil moisture #$#!

percentile, based on soil moisture anomalies in the top two centimeters of the column, (2) a root #$$!

zone soil moisture percentile, based on the top 100 centimeters, and (3) a groundwater percentile, #$%!

based on storage below the root zone. GRACE-DA drought indicators are provided to the #$&!

NDMC in the form of maps and datasets to be consistent with the USDM. The horizontal #$'!

resolution of the GRACE-DA drought indicators was approximately 25 km at the time of this #$(!
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study, although it has recently been improved to 12 km. The products are produced and #$)!

distributed in time to support production of the official, weekly USDM drought maps. #$*!

4.! Econometric analysis #%+!

The Bayesian decision framework in Section 2 provides the foundation for empirical estimation #%"!

of the correlation between the USDM drought severity categories and the true state of drought. #%#!

However, identifying the size of this correlation is difficult because there is no objective source #%$!

of information on the “true” state of drought that can be compared to USDM drought severity #%%!

categorizations. One way to overcome this challenge is to examine the statistical relationship #%&!

between the USDM drought categorizations and observed data in the agricultural sector that is #%'!

likely to be affected. In the following econometric analysis, we use farm income and crop yield #%(!

data as proxies for the “true” state of drought. #%)!

Drought can affect agricultural income in several ways. For example, drought can #%*!

adversely affect crop conditions and yields, thereby reducing farm revenues. Drought also can #&+!

increase on-farm production costs by increasing the amount of irrigation water that must be #&"!

applied or increasing the use of inputs that can substitute for water, such as labor and fertilizer. #&#!

On the other hand, drought may increase net farm income if agricultural markets respond to #&$!

reduced supply with higher crop or livestock prices, or if the drought triggers additional #&%!

government or crop insurance payments to farmers and ranchers. Because of these various #&&!

impacts of drought on the agricultural sector, one would expect a statistical analysis to show that #&'!

a drought indicator is correlated with farm income, even if the analysis is unable to identify the #&(!

exact mechanism that generates the correlation. #&)!

The econometric models are specified to estimate the marginal effect of drought, while #&*!

accounting for the fact that some of the determinants of the outcome (including some dimensions #'+!
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of drought) cannot be observed. The degree to which these unobserved determinants affect the #'"!

ability of an individual or organization to use the observed data to predict the economic outcome #'#!

is quantified by the standard errors associated with each of the models. As a result, the addition #'$!

of GRACE-DA information to these models can reduce standard errors. This reduction in error #'%!

can be interpreted as an improvement in our understanding of the impacts of drought. #'&!

4.1.Data #''!

The econometric analysis employs data from the USDM and GRACE-DA as key explanatory #'(!

variables. The NDMC maintains weekly USDM drought designation data, which is archived #')!

online back to the year 2000 in the form of county-level statistics.3 The University of Nebraska-#'*!

Lincoln maintains weekly GRACE-DA spatial data online; Tagged Image File Format (TIFF) #(+!

images of these spatial data are available for every week between August 2002 and September #("!

2014.4 #(#!

The USDM and GRACE-DA county data were merged, resulting in a dataset with #($!

drought designations by the USDM and the three GRACE-DA indicators for every county in the #(%!

continental United States, for every week between 2002 and 2014. We then assigned a single #(&!

drought category to each county-week observation by taking the highest drought category. For #('!

example, if 10 percent of a county is classified as D4 and the remainder is classified in a lower #((!

category in a given week, category D4 is assigned to that county-week observation. Then, for #()!

each county, the total number of weeks in each year that the county was assigned to each drought #(*!

category under the USDM and the three GRACE-DA indicators is calculated. #)+!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 This archive can be accessed at http://droughtmonitor.unl.edu/MapsAndData/GISData.aspx. 
4 The GRACE-DA drought indicator data are described in Section 2.2. The spatial data can be accessed at 
http://seca.unl.edu/web_archive/nasa/GRACE.!
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Farm income data were obtained from the Bureau of US Economic Analysis (BEA) for #)"!

each county and year covered by the drought indicator data. The economic indicator of interest in #)#!

the analysis is the sum of realized net income and the value of inventory change. Realized net #)$!

income consists of total cash receipts and other income for farms, minus total production #)%!

expenses. The value of inventory change is the value of the net change in farm inventories of #)&!

livestock and crops that are held for sale during a calendar year. As a result, we obtain an #)'!

estimate of farm proprietors’ income for a given year that includes farm income from production #)(!

during that year only, and not that of previous years. Inventories are an important factor to #))!

control for in an analysis of the impacts of drought on farm income since inventories contain #)*!

value of production generated in previous years for which current drought status does not apply. #*+!

BEA data on farm income are annual and were available until 2013; thus, the final panel data set #*"!

covers the 2002 to 2013 period. #*#!

Corn yield data were obtained from the USDA’s National Agricultural Statistics Service. #*$!

While farm income data are available for every county in every year during the 2002 to 2013 #*%!

period, yield data are not available for every county-year. Yield observations are missing when #*&!

counties do not experience corn production, have a sufficiently small number of producers such #*'!

that information is not disclosed for privacy reasons, or are simply not surveyed. #*(!

One important implication of the choice for an agricultural indicator is the relationship #*)!

between a drought severity signal and agriculture production is subject to many biophysical and #**!

behavioral processes in addition to impacts on crop and livestock conditions. As a result, the $++!

correlations capture the potentially countervailing effects of on-farm drought management and $+"!

adaptation, including changes in irrigation practices, crop choice, and seed type choice, as well $+#!

as policy-driven effects on farm income such as payments from drought relief programs and crop $+$!
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drought according to the USDM but were in D3 or D4 status under the three GRACE-DA %$%!

indicators were clustered in the Pacific Northwest, Nevada, Utah, Michigan, and New England. %$&!

These counties would have been the most likely to switch eligibility status had GRACE-DA %$'!

information influenced the production of the USDM in 2006, highlighting the practical %$(!

implications of harnessing the remotely sensed data. %$)!

In order to get a sense of the magnitude of the potential changes in assistance allocation, %$*!

we replicated the allocation approach that USDA outlines in their LAGP program fact sheet,6 %%+!

using GRACE and USDM drought indicators to determine eligibility, using the same time period %%"!

(7 March 2006 – 31 August 2006) and severity levels (D3 or D4). Once eligibility is determined %%#!

using all relevant indicators, the funding allocation was estimated based on the number of adult %%$!

beef cattle and sheep in eligible counties in each state, using USDA data. Keeping total funding %%%!

constant at $50 million, the allocation that would have occurred had eligibility been determined %%&!

using the GRACE-DA indicators is calculated. %%'!

Basing the allocation decision entirely on GRACE-DA indicators would have increased %%(!

program allocation to a large number of states and reduced allocations to a small number of %%)!

states, most notably Oklahoma, South Dakota, and Texas. If GRACE-DA had a greater influence %%*!

on the program’s eligibility decision, up to $16 million of the $50 million distributed by the %&+!

LAGP would have been allocated to different states than what they actually were. One obvious %&"!

caveat regarding these hypothetical changes in eligibility is that they assume that the eligibility %&#!

decisions would be made entirely based on a GRACE-DA indicator, which is unlikely to occur in %&$!

practice. It is also possible that policymakers may wish to make allocations based on %&%!

vulnerability considerations that the USDM is able to capture but that are not captured by %&&!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
6 The LAGP Fact Sheet is available at https://www.fsa.usda.gov/Internet/FSA_File/live_a_grant_prog06.pdf. 
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GRACE-DA or by farm income or crop yield data. However, the simulations are illustrative in %&'!

that they show the counties that would most likely have switched eligibility status had GRACE-%&(!

DA been further incorporated into eligibility decisions, as well as provide an upper bound on the %&)!

financial implications of alternative allocations under the LAGP. %&*!

The USDM is an important tool that is used by private and public sectors decision makers %'+!

for drought management. Because, in some cases, it is the sole criterion for a community’s %'"!

eligibility for disaster assistance, it is imperative that the USDM be as accurate as possible for %'#!

cost effective drought policy. In this paper, a Bayesian framework is developed for quantifying %'$!

the VOI of GRACE-DA soil moisture and groundwater indicators for drought monitoring, %'%!

including the development of a conceptual decision model, an econometric analysis to %'&!

characterize the contribution of GRACE-DA to the USDM in capturing the effects of drought on %''!

the agricultural sector, and hypothetical simulations of a real-world drought assistance policy. %'(!

GRACE-DA has the potential to lower the uncertainty associated with our understanding of %')!

drought, and that this improved understanding has the potential to change policy decisions that %'*!

lead to tangible societal benefits. %(+!

 Although we explored the policy relevance of our findings by examining how GRACE-%("!

DA data may have changed county eligibility for drought assistance under the LAGP program, %(#!

we are unable to quantify the actual VOI in this application because we do not have access to %($!

data on county-level allocations of aid funds. Such data would have allowed the estimation of the %(%!

effect of drought assistance on local agricultural outcomes. Future research may be able to %(&!

directly estimate the VOI of GRACE-DA for drought monitoring by explicitly modeling the %('!

socioeconomic outcomes associated with different drought management actions. %((!

 %()!
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Figure captions &'$!
 &'%!
Figure 1: Influence diagram describing the decision problem of issuing financial assistance. &'&!
Oval nodes indicate uncertain quantities, rectangular node relates to decisions and hexagonal &''!
nodes relate to outcomes (adapted from Economou et al 2016). &'(!
 &')!
Figure 2: Information flow diagram form GRACE-DA and the U.S. Drought Monitor weekly &'*!
mapping process &(+!
 &("!
Figure 3: Comparison of county eligibility for the Livestock Assistance Grant Program (2006) &(#!
using USDM and GRACE DAS indicators. Maps in the top row show counties that were deemed &($!
eligible for assistance based on USDM status but GRACE DAS indicators for groundwater &(%!
storage, surface soil moisture, and root zone soil moisture (respectively) did not indicate any &(&!
drought status. Maps in the lower row show counties that were deemed ineligible for assistance &('!
based on USDM status but GRACE DAS indicators for groundwater storage, surface soil &((!
moisture, and root zone soil moisture (respectively) indicated either extreme drought (D3) or &()!
exceptional drought (D4). &(*!
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Tables &)+!
Table 1: Effects of drought on net farm income and corn yield estimated using USDM and &)"!
GRACE-DA indicators &)#!
 &)$!

 Realized Net Income + Value 
of Inventory Change 

Corn Yield (bushels per 
acre) 

 No GRACE 
indicators 

(USDM only) 

All GRACE 
indicators 

No GRACE 
indicators 

(USDM only) 

All GRACE 
indicators 

Total weeks in D0 (USDM) 22.616*** 21.921*** -0.316*** -0.304*** 
 (5.037) (5.889) (0.023) (0.024) 
Total weeks in D1 (USDM) 8.905 14.767** -0.402*** -0.386*** 
 (6.772) (7.333) (0.024) (0.025) 
Total weeks in D2 (USDM) -18.067** -4.858 -0.636*** -0.615*** 
 (8.609) (8.577) (0.030) (0.032) 
Total weeks in D3 (USDM) -46.115*** -39.366*** -0.556*** -0.544*** 
 (5.821) (6.590) (0.038) (0.040) 
Total weeks in D4 (USDM) -96.279*** -50.429*** -0.735*** -0.634*** 
 (8.378) (8.656) (0.058) (0.061) 
Total weeks in D0 (RZSM)   25.583   0.096 
   (22.600)   (0.089) 
Total weeks in D1 (RZSM)   74.346***   0.175 
   (28.775)   (0.106) 
Total weeks in D2 (RZSM)   99.579***   -0.002 
   (32.986)   (0.137) 
Total weeks in D3 (RZSM)   192.634***   0.095 
   (37.585)   (0.165) 
Total weeks in D4 (RZSM)   377.925***   1.076*** 
   (36.112)   (0.187) 
Total weeks in D0 (SFSM)   -40.530   -0.082 
   (26.020)   (0.091) 
Total weeks in D1 (SFSM)   -93.538***   -0.331*** 
   (29.912)   (0.108) 
Total weeks in D2 (SFSM)   -166.727***   0.020 
   (34.478)   (0.138) 
Total weeks in D3 (SFSM)   -184.068***   -0.228 
   (38.299)   (0.165) 
Total weeks in D4 (SFSM)   -414.534***   -1.161*** 
   (36.779)   (0.185) 
Total weeks in D0 (GWS)   28.165***   0.007 
   (9.173)   (0.028) 

Continued on next page 
    

Table 1 (Continued) 
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Total weeks in D1 (GWS)   28.751***   0.123*** 
   (8.571)   (0.029) 
Total weeks in D2 (GWS)   18.354*   0.097** 
   (10.139)   (0.042) 
Total weeks in D3 (GWS)   53.009***   -0.057 
   (11.762)   (0.056) 
Total weeks in D4 (GWS)   2.401   0.180*** 
   (8.123)   (0.039) 
Constant -743.947*** -752.698*** 111.459*** 111.221*** 
 (89.329) (93.035) (0.457) (0.465) 
R2 0.075 0.085 0.290 0.298 
Adjusted-R2 0.074 0.084 0.290 0.297 
RMSE 6,620 6,585 20 19 
Akaike Information Criterion 748,372 747,999 185,481 185,281 
Bayesian Information Criterion 748,508 748,263 185,608 185,528 
N 36,624  36,624  21,109  21,109  

!  &)%!
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Table 2: Statistics and F tests for assessing the goodness of fit of net farm income models with and without GRACE-DA indicators "#"!

All lower 48 states (N = 36,624) (Realized Net Income + Value of Inventory Change) 
  No 

GRACE 
indicators 

Root zone 
soil 

moisture 
only 

Surface 
soil 

moisture 
only 

Groundwater 
only 

Root zone 
and surface 

soil 
moisture 

Root zone soil 
moisture and 
groundwater 

Surface soil 
moisture and 
groundwater 

All 
GRACE 

indicators 

Adjusted R squared 0.075  0.075  0.075  0.075  0.083  0.077  0.077  0.084  

Akaike Information Criterion 748,372  748,366  748,349  748,344  748,046  748,286  748,294  747,999  

Bayesian Information Criterion 748,508  748,545  748,528  748,523  748,267  748,508  748,516  748,263  

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A 0.008 <0.001 <0.001 0.000 0.000 0.000 0.000 

                  

High Plains (N = 4,848) 

Adjusted R squared 0.180 0.183 0.184 0.188 0.186 0.191 0.190 0.194 

Akaike Information Criterion 101,627  101,609  101,605  101,582  101,597  101,565  101,573  101,555  

Bayesian Information Criterion 101,730  101,745  101,741  101,719  101,766  101,734  101,742  101,756  

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A 0.004 <0.001 <0.001 <0.001 0.000 <0.001 <0.001 

                  
Midwest (N = 10,296) 

Adjusted R squared 0.284 0.286 0.289 0.286 0.292 0.288 0.292 0.294 

Akaike Information Criterion 212,589  212,570  212,525  212,576  212,493  212,544  212,489  212,467  

Bayesian Information Criterion 212,705  212,722  212,677  212,728  212,681  212,733  212,677  212,692  

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A <0.001 0.000 0.019 0.000 <0.001 0.000 0.000 

Continued on next page 
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Table 2 (Continued) 

Northeast (N = 3,564) 
  No 

GRACE 
indicators 

Root zone 
soil 

moisture 
only 

Surface 
soil 

moisture 
only 

Groundwater 
only 

Root zone 
and surface 

soil 
moisture 

Root zone soil 
moisture and 
groundwater 

Surface soil 
moisture and 
groundwater 

All 
GRACE 

indicators 

Adjusted R squared 0.096 0.098 0.099 0.097 0.101 0.098 0.099 0.101 

Akaike Information Criterion 63,369  63,367  63,361  63,372  63,361  63,372  63,366  63,364  

Bayesian Information Criterion 63,468  63,497  63,491  63,502  63,521  63,532  63,527  63,555  

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A 0.062 0.026 0.169 0.006 0.163 0.098 0.002 

                  
South (N = 7,764) 

Adjusted R squared 0.117 0.127 0.121 0.132 0.148 0.144 0.139 0.162 

Akaike Information Criterion 155,364  155,273  155,329  155,233  155,097  155,128  155,178  154,970  

Bayesian Information Criterion 155,475  155,419  155,475  155,379  155,278  155,309  155,359  155,185  

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A 0.000 <0.001 0.000 0.000 0.000 0.000 0.000 

                  
Southeast (N = 6,228) 

Adjusted R squared 0.210 0.212 0.212 0.211 0.217 0.213 0.213 0.218 

Akaike Information Criterion 113,219 113,214 113,211 113,222 113,176 113,209 113,204 113,172 

Bayesian Information Criterion 113,326 113,356 113,353 113,364 113,351 113,385 113,379 113,381 

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A 0.013 0.001 0.293 <0.001 0.001 <0.001 0.000 

         
West(N=3,924) 

Adjusted R squared 0.036 0.040 0.040 0.039 0.041 0.042 0.041 0.042 

Akaike Information Criterion 80,949 80,938 80,938 80,942 80,939 80,937 80,938 80,939 

Bayesian Information Criterion 81,050 81,070 81,070 81,074 81,102 81,100 81,101 81,133 

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A <0.001 0.001 0.036 0.000 0.001 0.002 <0.001 
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Table 3: Statistics and F tests for assessing the goodness of fit of corn yield models with and without GRACE-DA indicators "#$!

All lower 48 states (N = 21,109) (Corn Yield (bushels per acre) 
  No 

GRACE 
indicators 

Root zone 
soil 

moisture 
only 

Surface 
soil 

moisture 
only 

Groundwater 
only 

Root zone 
and surface 

soil 
moisture 

Root zone soil 
moisture and 
groundwater 

Surface soil 
moisture and 
groundwater 

All 
GRACE 

indicators 

Adjusted R squared 0.290 0.291 0.290 0.292 0.296 0.293 0.293 0.297 

Akaike Information Criterion 185,481 185,445 185,482 185,440 185,321 185,412 185,417 185,281 

Bayesian Information Criterion 185,608 185,612 185,649 185,607 185,528 185,619 185,624 185,528 

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A 0.005 0.173 <0.001 0.000 <0.001 <0.001 0.000 

                  
High Plains (N = 3,633) 

Adjusted R squared 0.341 0.350 0.352 0.343 0.360 0.350 0.352 0.359 

Akaike Information Criterion 31,214 31,166 31,156 31,207 31,119 31,171 31,162 31,127 

Bayesian Information Criterion 31,313 31,296 31,286 31,337 31,280 31,332 31,323 31,319 

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A <0.001 <0.001 0.023 0.000 <0.001 <0.001 <0.001 

                  
Midwest (N = 8,812) 

Adjusted R squared 0.437 0.441 0.442 0.445 0.442 0.447 0.448 0.448 

Akaike Information Criterion 75,533 75,475 75,466 75,420 75,463 75,391 75,380 75,386 

Bayesian Information Criterion 75,646 75,624 75,614 75,568 75,647 75,576 75,564 75,605 

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Continued on next page 
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Table 3 (Continued) 

Northeast (N = 1,758) 
  No 

GRACE 
indicators 

Root zone 
soil 

moisture 
only 

Surface 
soil 

moisture 
only 

Groundwater 
only 

Root zone 
and surface 

soil 
moisture 

Root zone soil 
moisture and 
groundwater 

Surface soil 
moisture and 
groundwater 

All 
GRACE 

indicators 

Adjusted R squared 0.498 0.502 0.502 0.501 0.502 0.502 0.502 0.503 

Akaike Information Criterion 14,768 14,759 14,760 14,761 14,764 14,762 14,763 14,766 

Bayesian Information Criterion 14,856 14,874 14,875 14,876 14,906 14,904 14,905 14,936 

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A 0.007 0.016 0.013 0.016 0.007 0.024 0.020 

                  
South (N = 3,192) 

Adjusted R squared 0.287 0.292 0.288 0.292 0.292 0.300 0.298 0.301 

Akaike Information Criterion 27,681 27,663 27,681 27,663 27,667 27,634 27,643 27,634 

Bayesian Information Criterion 27,778 27,791 27,808 27,791 27,825 27,792 27,801 27,822 

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A 0.001 0.144 <0.001 0.010 0.000 <0.001 <0.001 

                  
Southeast (N = 3,120) 

Adjusted R squared 0.356 0.360 0.359 0.360 0.376 0.362 0.365 0.378 

Akaike Information Criterion 27,989 27,976 27,978 27,975 27,901 27,968 27,953 27,897 

Bayesian Information Criterion 28,086 28,103 28,105 28,102 28,059 28,125 28,111 28,085 

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A 0.012 0.011 0.009 0.000 0.001 <0.001 0.000 

                  
West (N = 594) 

Adjusted R squared 0.101 0.133 0.120 0.106 0.135 0.130 0.115 0.131 

Akaike Information Criterion 5,028 5,011 5,020 5,030 5,014 5,018 5,028 5,022 

Bayesian Information Criterion 5,098 5,103 5,112 5,122 5,129 5,132 5,142 5,158 

p-values for F-test (all coefficients 
for GRACE variables = 0) 

N/A  0.005 0.094 0.261 0.010 0.009 0.289 0.028 
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Table 4: Distribution of the magnitudes of prediction errors for farm income models with and without GRACE-DA indicators "#%!

Magnitude of error Number of county-year observations 
Net farm income Corn yield 

USDM only With 
GRACE-DA 

USDM only With 
GRACE-DA 

! $131,072,000 and < $262,144,000 0 0 1 1 
! $65,536,000 and < $131,072,000 35 36 12 15 
! $32,768,000 and < $65,536,000 187 183 91 88 
! $16,384,000 and < $32,768,000 864 839 363 361 
! $8,192,000 and < $16,384,000 2,199 2,177 971 958 
! $4,096,000 and < $8,192,000 4,675 4,687 1,986 1,965 
! $2,048,000 and < $4,096,000 9,070 9,217 2,697 2,688 
! $1,024,000 and < $2,048,000 8,033 8,433 2,830 2,829 
! $512,000 and < $1,024,000 5,379 5,057 2,655 2,683 
! $256,000 and < $512,000 2,932 2,918 2,363 2,374 
! $128,000  and < $256,000 1,600 1,473 2,093 2,107 
! $64,000 and < $128,000 833 790 1,682 1,714 
! $32,000 and < $64,000 401 455 1,342 1,294 
! $16,000 and < $32,000 205 170 864 881 
! $8,000 and < $16,000 114 103 495 454 
! $4,000 and < $8,000 59 37 253 268 
! $2,000 and < $4,000 13 26 115 131 
! $1,000 and < $2,000 11 14 75 71 
! $0 and < $1,000 14 9 161 167 

 "##!
  "#&!
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Figures "&'!
Figure 1: Influence diagram describing the decision problem of issuing financial assistance. Oval nodes indicate uncertain quantities, "&(!
rectangular node relates to decisions and hexagonal nodes relate to outcomes (adapted from Economou et al 2016). "&)!
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Figure 2: Information flow diagram form GRACE-DA and the U.S. Drought Monitor weekly mapping process $()!
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Figure 3: Comparison of county eligibility for the Livestock Assistance Grant Program (2006) using USDM and GRACE DAS $(&!
indicators. Maps in the top row show counties that were deemed eligible for assistance based on USDM status but GRACE DAS $)'!
indicators for groundwater storage, surface soil moisture, and root zone soil moisture (respectively) did not indicate any drought $)(!
status. Maps in the lower row show counties that were deemed ineligible for assistance based on USDM status but GRACE DAS $))!
indicators for groundwater storage, surface soil moisture, and root zone soil moisture (respectively) indicated either extreme drought $)*!
(D3) or exceptional drought (D4). $)+!
 $)"!
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