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 416 
Figure 2. Binned average fire frequencies for each analyzed land cover type by fire size class. The 417 
x-axis of each chart denotes surface soil moisture as a percentage, and the y-axis shows the average 418 
number of fires per 0.25 degree cell for that soil moisture bin. 419 
 420 







and Wahr [2004] and Wahr et al. [1998] provide general post-processing details and Landerer and 124 
Swenson [2012] provides details on signal restoration, scaling, and regional error calculation. The 125 
GRACE dataset used for this project is a monthly, global, one-degree gridded, scaled GRACE land 126 
data product, which is processed by the Texas Center for Space Research [CSR; version CSR-127 
RL05] and �1�$�6�$�¶�V���-�H�W���3�U�R�S�X�O�V�L�R�Q���/�D�E�R�U�D�W�R�U�\���D�Q�G��available for download at grace.jpl.nasa.gov. 128 
The time period of data for this project is from April 2002 to December 2013.  129 
  130 
The Catchment Land Surface Model (CLSM) was developed at the NASA Goddard Space Flight 131 
Center and is a physically based, apportioned land surface model [Koster et al., 2000]. The sub-132 
grid horizontal structure of a rectangular atmospheric grid is divided into topographically-defined 133 
catchments with an average area of approximately 4000 km2. Water is redistributed spatially and 134 
vertically based on the topography of each basin or watershed. �7�K�H���P�R�G�H�O�¶�V���K�\�G�U�R�O�R�J�L�F���S�U�R�F�H�V�V�H�V��135 
�D�U�H���E�D�V�H�G���R�Q���H�D�F�K���F�D�W�F�K�P�H�Q�W�¶�V���W�R�S�R�J�U�D�S�K�L�F�D�O���V�W�D�W�L�V�W�L�F�V�� For the assimilation, the model-generated 136 
terrestrial water storage moisture components are corrected toward the GRACE observational 137 
estimate with the degree of correction determined by the levels of error associated with each using 138 
and Ensemble Kalman Smoothing Filter method (EnKS) [Zaitchik et al., 2008]. Monthly GRACE 139 
anomaly fields are converted to absolute values by adding the time-mean total water storage field 140 
from the CLSM output. Assimilation increments are calculated based on the relative uncertainty 141 
in the model and the observations where a two-step smoother is applied to handle GRACE’s 142 
monthly temporal resolution. These increments are applied directly to the column-integrated 143 
prognostic variable (the catchment deficit) and the primary non-equilibrium prognostic (the root 144 
zone excess moisture), without need for arbitrary vertical disaggregation. The CLSM-DA time 145 
series used here covers January 2003 to December 2014. Outputs are reported on 0.25-degree grid 146 
cells for the contiguous United States (domain: -126.875 23.875, -66.125 51.625), including 147 
portions of Canada and Northern Mexico. This gridded analysis is an interpolation of catchment 148 
tiles to a model grid. 149 
  150 
�7�K�H�� �8�6�’�$�� �)�R�U�H�V�W�� �6�H�U�Y�L�F�H�¶�V�� �)�L�U�H�� �3�U�R�J�U�D�P�� �$�Q�D�O�\�V�L�V�� �)�L�U�H-Occurrence database (FPA FOD) is a 151 
comprehensive geospatial database of wildfires in the United States from 1992 to 2013. It includes 152 
1.73 million geo-referenced wildfire records, representing a total of 126 million acres burned 153 
during the 22-year period [Short, 2015]. It also contains vital information for each of these fires, 154 
including date, cause, fire size, fire class, burned area, and coordinates. This data was imported 155 
into a geographic information system and processed into two separate raster datasets that matched 156 
the spatial and temporal resolution of the GRACE derived soil moisture data. The first dataset 157 
aggregated the annual number of fires in each 0.25 ×  0.25 degree cell for May through April of the 158 
following year, while the second summed the total burned area (in acres) for each cell in that 159 
timeframe. 160 
 161 
The land cover type �G�D�W�D�V�H�W���X�V�H�G���L�Q���W�K�L�V���V�W�X�G�\���Z�D�V���W�K�H���8�6�*�6�¶���1�D�W�L�R�Q�D�O���/�D�Q�G���&�R�Y�H�U���’�D�W�D�E�D�V�H��2011 162 
(NLCD 2011) [Homer et al., 2015]. This dataset maps land cover and land use across the United 163 
States at a 30 meter resolution. The NLCD data was first reclassified for generalization and 164 



resampled to the same spatial extent and resolution as the previous two datasets. This allowed each 165 
grid cell to have a unique land cover classifier, which could then be programmatically used to 166 
�H�[�W�U�D�F�W���Y�D�O�X�H�V���D�Q�G���F�K�D�U�D�F�W�H�U�L�]�H���H�D�F�K���U�H�O�H�Y�D�Q�W���Y�H�J�H�W�D�W�L�R�Q���W�\�S�H�¶�V���U�H�O�D�W�L�R�Q�V�K�L�S���E�H�W�Z�H�H�Q���V�R�L�O���P�R�L�V�W�X�U�H��167 
and wildfire. For the purposes of this study, only vegetated land cover types are of importance to 168 
wildfires. Accordingly, the Developed/Urban, Barren Land, and Planted/Cultivated classes were 169 
not considered in the analysis. The Mixed Forest class was not considered due to its unsuitably 170 
small number of pixels. Additionally, even though model simulations of wetland soil moisture may 171 
not be accurate due to missing physical processes, we include this class to represent general 172 
wet/dry responses in wetland environments. Figure 1 shows a visualization of this processed land 173 
cover data along with the other two datasets mentioned above. 174 
 175 
3. METHODS 176 
 177 
The first step in algorithm development was to disaggregate the fire data by size class as defined 178 
in Table 1. Annual January through April soil moisture data were averaged into single two-179 
dimensional maps (latitude × longitude) for each year. Annual total fire occurrence and cumulative 180 
burned area maps were produced for each wildfire class, for the period ranging May through April. 181 
This time period was selected in order to delineate a nominal fire season in line with the beginning 182 
of the Western US fire season, although true fire season tends to vary in time and by location 183 
[Westerling et al., 2003]. Each burned area and fire frequency value was plotted against its 184 
corresponding soil moisture value for the entire population of 0.25 degree grid cells within each 185 
land cover classification. This produced a distribution of fire occurrence and burned area as a 186 
function of soil moisture for each land cover class. These data were then binned by soil moisture 187 
ranges to calculate average fire occurrence and burned area values over each range. These 188 
distributions reveal the unique relationship in each land cover class between occurrence of 189 
wildfires of increasing severity classification as a function of soil moisture state. 190 
 191 
We also investigated whether the information contained in these relationships with soil moisture 192 
demonstrated predictive utility. Comprehensive deterministic prediction is challenging, because 193 
we don’t include all of the information required to determine the comprehensive source and forcing 194 
for all fire occurrence and severity; variables such as lightning strikes, human activity, and wind 195 
gusts all contribute substantially to actual wildfire predictability. Instead, we investigate a 196 
statistical tendency of soil moisture to affect wildfire occurrence by lumping a large population of 197 
observations into a single model, and evaluating how the population responds as whole to this 198 
single factor. We assume that the population captures the probable best estimate of the relationship 199 
that would occur at a single location under different conditions and across time. A comprehensive 200 
fire prediction model could likely include other forcing variables. 201 
 202 
The distributions were compiled as look-up tables to be referenced for mapping fire probability 203 
and predicted burned area. A simple equation for calculating fire probability and probable burned 204 
area were applied by referencing the look-up table corresponding to each land cover type for the 205 





urban) were removed from the data sets. Figure 4 shows that in the 2012 �– 2013 case study, the 247 
values for predicted fire frequency and burned area match the actual data within an error of 35.68% 248 
and 119.23% respectively, compared to an average error of 26.67% for predicted fires and 249 
124.08% for predicted burned area for the entire study period. 250 
 251 
5. DISCUSSION AND CONCLUSIONS 252 
 253 
It should be noted that the predictive maps presented are not intended to offer an accurate hindcast 254 
of actual fire occurrence and severity in individual 0.25�–degree grid cells. Rather they offer a 255 
qualitative assessment of the general relationship between seasonal soil moisture and wildfire 256 
potential. The validation results show that the total number of fires and burned area predicted is in 257 
fact correlated with the pre-season soil moisture data for the corresponding year, across the land 258 
cover grouping. This result simply highlights the principle importance of preseason soil moisture 259 
in governing fire risk and potential.  260 
 261 
These results also provide the first evidence that pre-season soil moisture and wildfire occurrence 262 
can be strongly negatively correlated across land cover types. In all land covers, for the smaller 263 
�F�O�D�V�V�H�V���R�I���I�L�U�H�V�����L���H�����F�O�D�V�V���‡D�·���R�U���V�P�D�O�O�H�U���������������D�F�U�H�V�������D�U�H���J�H�Q�H�U�Dlly (12 out of 20 pdfs) associated 264 
with higher pre-season soil moisture, not lower soil moisture as hypothesized. This likely describes 265 
a situation in which smaller and quick-growing vegetation (e.g. grasses and understory) are more 266 
prolific in wet years, and tend to contribute to wildfire persistence and propagation after ignition. 267 
This relationship has been studied before using precipitation observations [e.g. Holden et al., 268 
2007]. 269 
  270 
While the necessity is clear, the feasibility of wildfire predictive capabilities is increasing with the 271 
advent of innovative applications of new remote sensing data. Since accurate, observation-based 272 
surface soil moisture information has been difficult to obtain over large domains, GRACE-273 
assimilated model outputs may offer a unique contribution to fire severity prediction methods. 274 
This builds upon successes in using GRACE-assimilated model outputs for hydrologic drought 275 
monitoring [Houborg et al., 2012]. The current NASA Soil Moisture Active Passive (SMAP) 276 
mission, launched January, 2015, offers global observations of radiometer-based surface soil 277 
moisture at 36-km spatial resolution that can be used in conjunction with GRACE-assimilation 278 
efforts and should generally improve this methodology [Entekhabi et al., 2010]. This highlights 279 
the importance of the NASA hydrological data catalog for its predictive capabilities, which can 280 
further be enhanced when used in conjunction other wildfire risk indicators. 281 
  282 
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8. TABLES 363 
 364 
Table 1. Fire Size Class Definitions1 365 

Class Burned 
Acres 

A 0 �– 0.25 

B 0.26 �– 9.9 

C 10 �– 99.9 

D 100 �– 299 

E 300 �– 999 

F 1000 �– 4999 

G 5000 + 
1Class size ranges are defined in [Short 2015] 366 
 367 
 368 
 369 
 370 
 371 
 372 
 373 
Table 2. Land Cover Surface Soil Moisture and Fire Frequency Characteristics 374 
 Volumetric Water 

Content 
Fire Frequency 

(Fires/Year) 
Land Cover 
Type 

Average Standard 
Deviation 

Average Standard 
Deviation 

Evergreen Forest 0.25 0.07 9.41 12.84 

Deciduous Forest 0.31 0.06 9.05 13.49 

Shrubland 0.19 0.05 3.48 9.16 

Grassland 0.20 0.05 3.595 11.08 

Wetland 0.25 0.07 11.46 16.79 
 375 
 376 
 377 
 378 
 379 
 380 
 381 
 382 



Table 3. Predicted and Actual Fire Data with Associated Prediction Errors 383 

 384 
 385 
 386 
 387 
 388 
 389 
 390 
 391 
 392 
 393 
 394 
 395 
 396 
 397 
 398 
 399 
 400 
 401 
 402 
 403 
 404 
 405 
 406 
 407 
 408 

 Predicted 
Fires 

Actual 
Fires 

Predicted 
Burned 
Acres 

Actual 
Burned 
Acres 

Predicted 
Fires Percent 
Error  

Predicted 
Burned Area 
Percent Error 

5/2003 - 4/2004 68758 53542 7629351.29 3333260.32 28.42 128.89 

5/2004 - 4/2005 68966 44304 7696006.32 1288883.79 55.67 497.11 

5/2005 - 4/2006 74285 72461 8189855.53 6710199.52 2.52 22.05 

5/2006 - 4/2007 66928 66903 7369845.89 7181219.66 0.04 2.63 

5/2007 - 4/2008 69647 62238 7655771.51 8680825.32 11.90 11.81 

5/2008 - 4/2009 67190 59937 7544476.06 3887901.30 12.10 94.05 

5/2009 - 4/2010 67735 43507 7478052.64 1603893.48 55.69 366.24 

5/2010 - 4/2011 73422 55468 8119098.39 4935915.82 32.37 64.49 

5/2011 - 4/2012 70015 52897 7494680.79 5312742.66 32.36 41.07 

5/2012 - 4/2013 66050 48679 7313730.04 8354888.73 35.68 12.46 



9. FIGURES 409 

 410 
Figure 1. The datasets used in this study: (a) GRACE-derived surface soil moisture expressed as 411 
percent. This example shows average January �– April surface soil moisture from 2003 �– 2013. (b) 412 
All fires from the 2003 �– 2013 study period in the FPA FOD mapped as points by fire cause. (c) 413 
The NLCD 2011 resampled to a 0.25-degree resolution.  414 



 415 

 416 
Figure 2. Binned average fire frequencies for each analyzed land cover type by fire size class. The 417 
x-axis of each chart denotes surface soil moisture as a percentage, and the y-axis shows the average 418 
number of fires per 0.25 degree cell for that soil moisture bin. 419 
 420 



 421 
Figure 3. Predictive maps for (a) individual fires and (c) burned area to assess fire risk and 422 
potential from May 2012 �– April 2013. These predictive results are compared against the (b) actual 423 
fire distribution and (d) actual burned area for that year for validation. 424 
  425 




