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A scalar gravitational potential function expressed as a series of spherical harmonics
frequently serves as the basis for a model of an astronomical body’s gravitational eld.
The contribution of a generic spherical harmonic to gravitational gradient is expressed as
a dyadic, which is then used to obtain an analytical expression in vector-dyadic form for
the contribution to the moment of gravitational forces about the mass center of a small
body such as a spacecraft. The expression developed for a harmonic’s contribution to
gravitational gradient can be applied in areas beyond the scope of the paper; for example,
gravitational gradient plays an important role in the state propagation matrix and the state
transition matrix that are used in spacecraft trajectory targeting and Kalman lItering.
Additionally, it can be employed in numerical simulations of orbit determination based on
measurements obtained with a gradiometer in low-Earth orbit. Contributions of spherical
harmonics to gravitational moment may be of interest in connection with attitude control
of a spacecraft in the vicinity of a body with an irregular shape, such as an asteroid.
Normalized spherical harmonic coe cients up to degree and order 10 are obtained for the
asteroid 216 Kleopatra and used in numerical evaluations of contributions to gravitational
moment.

. Introduction

herical harmonics are widely used to characterize the magnetic and gravitational elds of Earth, as
g/ell as the gravitational elds of irregularly shaped bodies such as asteroids, comets, and the moons of
Mars. A sphere that circumscribes every material point of an astronomical body is referred to as a Brillouin
sphere; convergence of a spherical harmonic series is guaranteed in the region of space outside of this sphere,
but convergence is not guaranteed inside. In the case of Earth, the radius of the Brillouin sphere is equal to
the mean equatorial radius, 6,378 km. For example, points above the North or South pole at altitudes less
than 20 km are inside the Brillouin sphere. A polyhedral gravity model (Ref. [1]) is valid down to the surface
of the polyhedron; however, it is signi cantly more computationally expensive than a spherical harmonic
gravitational model. A polyhedral model is employed for bodies with irregular shapes at distances near or
below the radius of the Brillouin sphere.

A scalar gravitational potential function expressed as a series of spherical harmonics forms the basis for a
gravitational model. The rst derivative of the potential with respect to position vector is the gravitational
force per unit mass, which is a vector. The second derivative of the potential with respect to position is a
dyadic, known as the gravitational gradient, and it can be used to construct the moment of gravitational
forces about the mass center of a small body such as a spacecraft. This moment is sometimes referred
to as gravity-gradient torque. Each spherical harmonic makes a contribution to gravitational moment.
These contributions are typically neglected for spacecraft in Earth orbit, but they may be of interest when
considering attitude behavior in the vicinity of an asteroid with highly irregular shape or mass distribution.

Zonal harmonics are independent of longitude, sectoral harmonics are independent of latitude, and tesseral
harmonics are dependent on latitude and longitude. Expressions for contributions to gravitational moment
provided in Refs. [2] and [3] are limited to the zonal harmonics. The purpose of this paper is to extend the
work in those publications to deal with sectoral and tesseral harmonics.

The expressions related to gravitational gradient provided in the paper are useful for purposes other than
construction of gravitational moment. In studies of spacecraft orbital motion it is often advantageous to
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Table 2. Normalized coe cients for Kleopatra, n =8;9;10

n m En;m §n;m

8 0 0.000245673 0
8 1 0:000329775 5:14566 10 °

8 2 0:000394157 89922 10 °

8 3 0.000286091 0.000157709
8 4 0.000510949 5:08607 10 °

8 5 0:00021868 0:000267254
8 6 0:000620071 0.000114282
8 7 0.000158152 0.000351333
8 8 0.000572136 0:000293814
9 0 905715 10 ° 0
9 1 715439 10 ° 5.02249 10 °

9 2 8:70043 10 ° 8:6136 10 °

9 3 3:.08506 10 ° 6:34522 10 ©

9 4 2:42296 10 ° 0:0001605
9 5 6:18706 10 ° 2:2585 10 °

9 6 0.000166904 0.000208757
9 7 0.000243874 0:000117568
9 8 0:00026601 0:000206909
9 9 0:000681636 0.000388259
10 O 38741 10 ° 0
10 1 0.000162276  :95518 10 °
10 2 339526 10 ° 7:28263 10 ©
10 3 0:000144807 6:0498 10 °
10 4 2:35412 10 ° 849923 10 °
10 5 0.000116467 0.000105469
10 6 994341 10 ° 1:74278 10 ©
10 7 893117 10° 0:000151414
10 8 0:000153653 23242 10 °
10 9 756925 10 ° 0.000180907
10 10 0.000105512 0:000131908

Table 3. Direction Cosines

b, b, b3
8, cos sin 0
&, | cosi sin COSi cos sini
€3 | sinisin sini cos cosi
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