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Abstract 
This paper describes technical progress made in the application of run time assurance (RTA) methods to 

turbofan engines with advanced propulsion control algorithms that are employed to improve engine performance.  
It is assumed that the advanced algorithms cannot be fully certified using current verification and validation 
approaches and therefore need to be continually monitored by an RTA system that ensures safe operation.  
However, current turbofan engine control systems utilize engine protection logic for safe combustion dynamics 
and stable airflow t hrough the engine.  It was determined that the engine protection logic should continue to be 
used to provide system safety and should be considered as a part of the overall RTA system.  The additional 
function that an RTA system provides is to perform diagnostics on anomalous conditions to determine if these 
conditions are being caused by errors in the advanced controller. If this is the case, the RTA system switches 
operation to a trusted reversionary controller.  Initial studies were performed to demonstrate this benefit.  The 
other focus was to improve the performance of the engine protection logic, which was deemed too conservative 
and reduced engine performance during transient operations.  It was determined that the conservative response 
was due to poor tuning of one of the controller channels within the protection logic. An automatic tuning algorithm 
was implemented to optimize the protection logic control gains based on minimizing tracking error. Improved 
tracking responses were observed with no change to the existing protection logic control architecture.  

Nomenclature 
C-MAPSS40k  Commercial Modular Aero Propulsion System Simulation 40k 
CA  conditionally active DTA  design time assurance  
�’�7�$�¶�G�� design time assured EPR  engine pressure ratio  
HPC  high pressure compressor IFT  iterative feedback tuning  
MBEC  model based engine control OTKF  optimal tuner Kalman filter  
PI proportional-integral PID  proportional-integral-derivative  
PLA  power lever angle PR  pressure ratio  
RTA  runtime assurance �5�7�$�¶d  runtime assured  
SM  surge margin V&V  verification and validation  
Wf  fuel flow 
 

I. Introduction  
here is now wide interest in run time assurance (RTA) approaches for a number of safety or operational critical 
systems.  In recent years a number of national and international forums and conferences have emerged that are 
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The theory of the IFT method presented here was initially presented by Hjalmarsson, et al. in [17]. The original 
presentation treats a more general two-degree-of-freedom controller with disturbances. The presentation here is 
simplified to consider single-degree-of-freedom controllers that are a function of combined tracking error, like a 
proportional-integral-derivative (PID) controller and also ignores disturbances. 

Assume the following unknown system and single-degree-of-freedom controller:  

  (2) 

  (3) 

It is assumed that the controller, C, has a defined structure and is parameterized by a set of tuning parameters, �U. 
For example, C could represent a PID controller, parameterized by the control gains, �U. It is apparent that for the 
closed-loop system, both the output and input are functions of the target control parameters, �U. The closed-loop 
tracking error can be defined as 

  (4) 

where, 

  (5) 

The desired output response  is defined by some filter applied to the reference input and the closed-loop transfer 
function is defined as .  In order to minimize the tracking error, an optimization cost function can be defined in 
terms of the summed square of the tracking error over some number of samples, N, of a simulation run and weighted 
by the squared control effort, : 

   (6) 

For this application, weighting on the control signal was not addressed for the controller optimization so the cost 
function is simplified as shown. The goal of the algorithm is to determine the set of controller parameters, �U, which 
minimize the objective function, . The objective function is minimized (locally) when its gradient is zero. So 
the Gauss-Newton iteration procedure is to determine the gradient of the cost function 

  (7) 

and iterate the control parameters until they satisfy the criteria for the minimum of the function 

  (8) 

where the iteration step size, �J, for the i th step, controls the convergence rate for the control parameters. The update 
direction at the i th iteration step, , is specified by the user. However, the update direction is typically selected as a 
Gauss-Newton approximation of the Hessian of the objective function, J, which is defined as 

  (9) 

Where the control effort is not included in the current definition of the cost function. �6�L�Q�F�H���L�W�¶�V���D�V�V�X�P�H�G���W�K�D�W���W�K�H��
process cannot be modeled as a mathematical function, the gradients must be computed from the process (or 
simulation) outputs. Using the closed-loop transfer function, T0 the gradient of the tracking error can be defined as 
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Figure 16. Tracking Response - 15 Iterations Figure 17. Tracking Error Cost - 15 Iterations 

  
Figure 18. Proportional Gain - 15 Iterations Figure 19. Integral Gain - 15 Iterations 

  
Figure 20. Tracking Response - 25 Iterations Figure 21. Tracking Error Cost - 25 Iterations 
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Figure 26. Proportional Gain - 100 Iterations Figure 27. Integral Gain - 100 Iterations 

 
Table 2 summarizes the optimization results using the IFT method. It indicates that the substantial changes in the 

integral control were most influential on reducing the cost. Table 2 �D�O�V�R���V�K�R�Z�V���W�K�H���µ�R�Y�H�U���W�X�Q�L�Q�J�¶���F�R�U�U�H�V�S�R�Q�G�L�Q�J���W�R���W�K�H��
increase in cost going from twenty-five up to 100 iterations. 

Table 2. Iterated Optimization Results 

Iteration  Cost (J x 104) Proportional Gain (K p x 10-3 ) Integral Gain (K i x 10-3) 
0 1.85 182 368 
5 1.42 198 758 
15 1.11 206 1111 
25 1.01 237 1293 
100 1.05 329 1413 

 

F. IFT Application to Varying Environmental Conditions  
The IFT algorithm was executed in a loop covering a range of altitude and Mach conditions to evaluate how well 

the automatic tuning worked over a range of environmental conditions. The same PLA step change was applied at 
time 0 for each evaluation case. Figure 28, Figure 29, and Figure 30 show the improved tracking response 
corresponding to 25 IFT iterations for a range of altitude and Mach conditions.   

  
Figure 28. Acceleration Tracking Response �± Alt = 10k feet Mach = 0.4  
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Figure 12. Tracking Response - 5 Iterations Figure 13. Tracking Error Cost - 5 Iterations 

  
Figure 14. Proportional Gain - 5 Iterations Figure 15. Integral Gain - 5 Iterations 

After fifteen iterations of the control parameter optimization, the response improved as shown in Figure 16.  The 
associated decrease in tracking error cost and the evolution of the proportional and integral gains are shown in, Figure 
17, Figure 18, and Figure 19, respectively. While the tracking performance is obviously improved with the new gains, 
neither the tracking cost nor the PI control gains appear to have converged. 

After twenty-five iterations of the control parameter optimization, the response improved substantially as shown 
in Figure 20. The associated decrease in tracking error cost and the evolution of the proportional and integral gains 
are shown in, Figure 21, Figure 22, and Figure 23, respectively. The tracking performance is greatly improved using 
the new gains.  In addition, the tracking cost appears to be converging as well as the integral gain term. However the 
proportional term has not converged. Nonetheless, twenty-five iterations was adopted as the convergence point for the 
acceleration limiter when the algorithm was applied across a range of Mach and Altitude numbers.  
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Figure 16. Tracking Response - 15 Iterations Figure 17. Tracking Error Cost - 15 Iterations 

  
Figure 18. Proportional Gain - 15 Iterations Figure 19. Integral Gain - 15 Iterations 

  
Figure 20. Tracking Response - 25 Iterations Figure 21. Tracking Error Cost - 25 Iterations 
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Figure 22. Proportional Gain - 25 Iterations Figure 23. Integral Gain - 25 Iterations 

To ensure convergence of the algorithm, the optimization was run for 100 iterations to observe the change in the 
tracking response and the evolution of the tracking error cost and the optimal control gains. The tracking response in 
Figure 24 is slightly worse than the twenty-five iteration case which corresponds to the slight uptick in the tracking 
error cost in Figure 25 as the objective function converges. The proportional control gain in Figure 26 and the integral 
control gain in Figure 27 �E�R�W�K���D�W�W�D�L�Q���W�K�H�L�U���F�R�Q�Y�H�U�J�H�G���Y�D�O�X�H�V�����+�R�Z�H�Y�H�U�����W�K�L�V���U�H�V�S�R�Q�V�H���P�L�J�K�W���E�H���F�R�Q�V�L�G�H�U�H�G���µ�R�Y�H�U���W�X�Q�H�G�¶��
and the initial minimum of the tracking error cost is a better metric in determining when to stop the gain iteration. As 
previously stated, the twenty-five iteration case is selected as the ideal response. 

  
Figure 24. Tracking Response - 100 Iterations Figure 25. Tracking Error Cost - 100 Iterations 
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Figure 26. Proportional Gain - 100 Iterations Figure 27. Integral Gain - 100 Iterations 

 
Table 2 summarizes the optimization results using the IFT method. It indicates that the substantial changes in the 

integral control were most influential on reducing the cost. Table 2 �D�O�V�R���V�K�R�Z�V���W�K�H���µ�R�Y�H�U���W�X�Q�L�Q�J�¶���F�R�U�U�H�V�S�R�Q�G�L�Q�J���W�R���W�K�H��
increase in cost going from twenty-five up to 100 iterations. 

Table 2. Iterated Optimization Results 

Iteration  Cost (J x 104) Proportional Gain (K p x 10-3 ) Integral Gain (K i x 10-3) 
0 1.85 182 368 
5 1.42 198 758 
15 1.11 206 1111 
25 1.01 237 1293 
100 1.05 329 1413 

 

F. IFT Application to Varying Environmental Conditions  
The IFT algorithm was executed in a loop covering a range of altitude and Mach conditions to evaluate how well 

the automatic tuning worked over a range of environmental conditions. The same PLA step change was applied at 
time 0 for each evaluation case. Figure 28, Figure 29, and Figure 30 show the improved tracking response 
corresponding to 25 IFT iterations for a range of altitude and Mach conditions.   

  
Figure 28. Acceleration Tracking Response �– Alt = 10k feet Mach = 0.4  
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Figure 29. Acceleration Tracking Response �– Alt = 10k feet Mach = 0.8  

 
Figure 30. Acceleration Tracking Response �– Alt = 20k feet Mach = 0.6  

Table 3 shows the optimal integral gain matrix corresponding to variations in altitude and Mach. There is a 
maximum 15% change in the integral gain which indicates that scheduling over a range of altitude and Mach values 
might not be necessary for achieving improved response. However, each of these cases was run with a fixed number 
of 25 iterations. If an intelligent iteration stop was implemented based on achieving the minimum tracking error cost, 
then improved performance might be attained corresponding to a larger spread in the integral gain values. 

Table 3. Integral Gain, K i Matrix ( x 10 -3) 

Altitude (x 1000 ft) M = 0 M = 0.2 M = 0.4 M = 0.6 M = 0.8 
0 127 127 129 137 X 
10 140 139 135 136 144 
20 X X X 147 145 

 

G. IFT Modifications for Acceleration Limiter  
The IFT algorithm requires a fixed number of samples to perform the cost computations. Initially, this was 

selected as the entire length of the acceleration ramp-up due to the PLA step change. However, this did not result in 
convergence of the algorithm. This is undoubtedly tied to the nonlinearity of the system. A modified form of the IFT 
algorithm allows the cost functions to be computed over a selected range of the closed-loop sim�X�O�D�W�L�R�Q���W�L�P�H�����$���µ�P�D�V�N�¶��
of length 0t  is defined as 
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  (16) 




