
where the components of the generalized inertiaM , dampingC, and sti�ness K matrices are
found in.12,13 in general, gravity, aerodynamic loads, thrust, and control forces are considered
in the generalized load vector of aircraft, which is given as

(
R F

R B

)

=

(
K F F "0

0

)

+

"
JT

p"

JT
pb

#

B F Fa +

"
JT

�"

JT
�b

#

B M M a

+

"
JT

h"

JT
hb

#

N gg +

"
JT

p"

JT
pb

#

T +

"
�B F

�B B

#

u

(3)

which involves the e�ects from initial strains"0, aerodynamic loadsFa and M a, gravitational
�elds g, thrust force T , and additional control input u. B F , B M , and N g are the in
uence
matrices for aerodynamic lift, moment, and gravity force, respectively, which come from
the numerical integration of virtual work done by the external loads along the wing span
(see Su and Cesnik12). In
uence matrices of the control input (�B F and �B B ) are dependent
on the speci�c control mechanism and are yet to be determined in this paper. Finally,
all the Jacobian matricesJ in Eq. (3) can be obtained from the nonlinear strain-position
kinematic relationship discussed in,15,17 which link the dependent variables (nodal positions
and orientations) to the independent variables (element strain and rigid-body motion). It
should be noted that both elastic member deformations and rigid-body motions are included
when deriving the internal and external virtual work in Su and Cesnik.12 Therefore, the
elastic (") and rigid-body (� ) degrees of freedom are naturally coupled. This coupling is also
highlighted in Eq. (2), where the elastic deformations and the rigid-body motions are solved
from the same set of equations.

In Eq. (3), aerodynamics loads are calculated by using the 2-D �nite-state in
ow theory.18

At a given station along the wing, the aerodynamics lift, moment, and drag are given as

lmc = �� 1 b2
c (� •z + _y _� � d•� ) + 2 �� 1 bc _y2

�
�

_z
_y

+
�

1
2

bc � d
�

_�
_y

�
� 0

_y

�

mmc = �� 1 b2
c

�
�

1
8

b2
c •� � _y _z � d_y _� � _y� 0

�

dmc = � 2�� 1 bc
�

_z2 + d2 _� 2 + � 2
0 + 2d_z _� + 2 _z� 0 + 2d _�� 0

�

(4)

where the in
ow states � are governed by the in
ow equation in Eq. (2). The di�erent
velocity components referred by Eq. (4) can be seen in Fig. 2.

B. De�nition of general distributed control load

In the current study, a distributed control scheme is developed by assuming every element
along the main wing can be actuated. Figure 3 shows a generic wing element with applied
point force (u1) and force couplings (ru2, ru3 and ru4) on both ends in order to actuate
it. The combined loads may independently actuate the extensive, torsional, out-of-plane
bending, and in-plane bending deformations of the element. These elemental loads are
written as

�
Fpt

u

�
e

=
n

� u1 0 0 0 0 0 u1 0 0
oT

�
M pt

u

�
e

=
n

� ru2 � ru3 � ru4 0 0 0 ru2 ru3 ru4

oT (5)
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Figure 3: Point control forces on a beam element (Black: extension force; Blue: torsion
coupling; Red: out-of-plane bending coupling; and Green: in-plane bending coupling).

C. Determination of optimum wing geometry

Under a given 
ight condition (U1 and � ), the optimum wing geometry and other control
inputs should be determined to satisfy the trim of aircraft. In general, the trim variables
are:

qtrim =
n

� B ' B T u
oT

(9)

where � B is the body pitching angle,' B is the bank angle, andu is the control input as
de�ned in Sec. B. With the rigid-body rotation angles, one can prescribe the quaternions
and rigid-body velocity:

� = � (� B ; ' B )

� = � (U1 ; � )
(10)

Therefore, the original aeroelastic and 
ight dynamic equations (Eq. 2) are reduced to steady-
state equilibrium equations, after removing the transient terms and unsteady aerodynamic
contributions, which are

K F F " � R F (� B ; ' B ; T ; u; ") = 0

R B (� B ; ' B ; T ; u; ") = 0
(11)

where the loads are explicitly determined by the trim variables, as well as the wing shape. It
is clear that the second entry of Eq. (11) is essentially the trim condition that an aircraft in
steady 
ight should satisfy, while the �rst is the elastic equilibrium only for 
exible aircraft.

In the study of Su et al.,11 a modal-based approach was developed to search for the
optimum wing geometry without using the traditional control surfaces. This approach is
still utilized here, where the wing geometry is represented by linear mode shapes, such that

�" (s; t) =
NX

i =1

� i (s)� i (t) (12)
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where � are the linear mode shapes of the 
exible aircraft and� are the corresponding
magnitudes of the modes. This approach allows one to use a �nite number of modes to
search for the optimum wing shape, targeting for the minimum drag as the optimum 
ight
performance, while maintaining the trim and elastic equilibrium of the aircraft.

r F = K F F �" � R F (� B ; ' B ; T ; u; � 1; � 2; � � � ; � N )

r B = R B (� B ; ' B ; T ; u; � 1; � 2; � � � ; � N )
(13)

From Eq. (13) and Eq. (8) the control forceu can be calculated during each step of the
optimization process as

u = �B � 1
F

�
K F F �" � JT

p" B
F Fa � JT

�" B M M a � JT
h" N gg � JT

p" T
�

(14)

With the elastic equilibrium now satis�ed, the optimization problem is de�ned as

min
q

D = D(q)

s:t: r B = 0

q =
n

� B ' B T � 1 � 2 � � � � N

oT

(15)

D. Multi-objective optimization

It may be desired to determine a shape which accomplishes a goal other than minimizing
drag. Highly-
exible aircraft with slender wings are often susceptible to the e�ects of a
gust. To account for this, another objective function is required so as to minimize the wing
bending moment due to gust disturbances. This function will then be combined with the
minimum drag objective to formulate a multi-objective optimization problem. This allows
for a study to be performed to understand the various shapes required to �nd the trade-o�
between the minimum drag and the minimum gust e�ects.

A discrete gust model is used to calculate the moment a gust could generate on root of
the wing. The gust should have a width 25 times longer than the chord of the wing, which
for this particular study would result in a gust that is 25 meters long. The gust velocity can
be expressed as here

wgust =
w0

2

�
1 � cos

�
2�x
25c

��
(16)

To further simplify the problem a method similar to19 will be used. This reduces the gust
so that the entire streamwise length of the airfoil section experiences the same value of the
gust velocity at a given time. This gives an e�ective angle of attack as expressed here

� g =
1
2

w0

U1

�
1 � cos

�
2�x
25c

��
(17)

The maximum angle of attack will occur as

(� g)max =
w0

U1
(18)

from which the resulting aerodynamic loads can be calculated.
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which is put into the state-space form

_x= Q � 1
1 Q2x + Q � 1

1 Q3u r

= Ax + Bu r
(28)

where the state variable is

xT =
n

"T _"T � T � T PT
B � T

o
(29)

and the matrices for calculating the system matrices are

Q1 =

2

6
6
6
6
6
6
6
6
4

I 0 0 0 0 0
0 �M F F

�M F B 0 0 0
0 �M BF
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0 0 0 0 I 0
0 � F1F � F1B 0 0 I

3

7
7
7
7
7
7
7
7
5

Q2 =

2

6
6
6
6
6
6
6
6
6
4

0 I 0 0 0 0
� �K F F

�CF F
�CF B R g

F=� 0 R a
F=�

0 �CBF
�CBB R g

B=� 0 R a
B=�

0 0 � 1
2

�

 �=�

�
� 0 � 1

2 
 � 0 0

0 0
h

CGB 0
i h

CGB
=� 0

i
� 0 0 0

0 F2F F2B 0 0 F3

3

7
7
7
7
7
7
7
7
7
5

Q3 =
h

0 �B T
F r

�B T
Br 0 0 0

i T

(30)

The control output is simply de�ned as the strain vector of the aircraft. Therefore the output
equation is written as

y = Cx + Du r (31)

where

C =
h

I 0 0 0 0 0
i

D = 0
(32)

In a special interest, one may want to explore the shaping control development under the
varying 
ight speed (for minimum drag). For a more complex 
ight controller scheduling, it is
desired to understand the wing shaping control algorithm with multiple objectives (minimum
drag and alleviated gust load). A common fact to these problems is that the control system
matrices are dependent on a linearly varying parameter (
ight speedU1 or tuning parameter
� ). By taking advantage of this fact, a linear parameter-varying (LPV) approach21,22 will be
used to design the controllers for the wing shaping control under di�erent 
ight conditions.
More details about the controller design will be presented in the �nal paper.
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III. Sample Numerical Results

As the preliminary study, the optimum wing shape of a highly 
exible aircraft has been
studied for two scenarios. The �rst considers the optimum wing shapes under varying 
ight
speeds, while in the second case, the wing shape is optimized with the targets of both
minimum drag and minimum gust load. However, the shaping controllers are yet to be
designed, which will be presented in the �nal paper.

A. Level Flight Velocity Range: 18 - 28 m/s

An aircraft may experience a wide variety of 
ight conditions over the course of their 
ight
plane. This will require separate optimum shapes for each di�erent 
ight condition experi-
enced. This section explores the various optimum wing geometries associated with varying

ight velocities that the aircraft might encounter. Speci�cally, the range of 18 to 28 m/s is
explored. Each of these cases is treated as an individual steady level 
ight case, meaning
again only the symmetric modes are considered as design variables. The aircraft model is
again trimmed using the traditional control surfaces for each 
ight velocity in order to have
a point of comparison with the optimum solution as well as an initial set of design variables.
Some of the trim results are expressed in Table 1 for both the initial and optimum cases. One
measure in the e�ectiveness of the optimization is to examine the percent di�erence in the
thrust required. This gives an idea into the potential energy savings of the optimum wing
shape versus the initial wing shape. For this velocity range the varying percent di�erence is
as great as 12:68% and as low as 4:64% meaning the drag reduction is somewhat dependent
on the speci�c 
ight condition. Figs. 4 to 7 highlight four distinct shapes seen over the
velocity range.

Table 1: Initial and optimum trim data for U = 18 to 28 m/s

Initial Optimum

U, m/s Drag, N Thrust, N BAOA, deg Drag, N Thrust, N BAOA, deg

18 105.254 105.974 6.595 100.799 101.061 4.1077
19 95.571 96.011 5.485 90.278 90.468 3.721
20 87.195 87.468 4.528 82.724 82.864 3.353
21 79.943 80.110 3.699 77.479 73.586 3.210
22 73.657 73.756 2.973 66.992 67.085 3.041
23 68.190 68.245 2.333 61.091 61.177 2.940
24 63.424 63.454 1.766 56.053 56.121 2.906
25 59.268 59.282 1.260 51.696 51.763 2.886
26 55.659 55.665 0.803 50.246 50.325 3.140
27 52.520 52.521 0.389 49.733 49.806 3.078
28 49.811 49.811 0.010 41.287 45.604 2.463
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