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The development of dynamic mesh capability for turbulent 
ow simulations using the
Streamlined Upwind Petrov-Galerkin (SUPG) discretization is described. The current
work extends previous research to include high-order spatial accuracy, including the satis-
faction of the discrete geometric conservation law (GCL) on curved elements. Two closely-
related schemes are described and the ability of these schemes to satisfy the GCL, while
also maintaining temporal accuracy and conservation is assessed. Studies indicate that
although one scheme discretizes the time derivative in conservative form, both schemes
exhibit temporal conservation errors that decrease according to the expected design order
of accuracy. The source of the temporal conservation errors is examined, and it is demon-
strated that many �nite-volume and �nite-element schemes can also be expected to have
di�culty strictly satisfying conservation in time. The e�ects on conservation are examined
and, while present in the simulations, are seen to be negligible for the problems considered.

I. Introduction

In Ref. 1, computational results demonstrate that a stabilized �nite-element discretization can provide
notable accuracy bene�ts over a commonly used �nite-volume discretization, especially on triangular and
tetrahedral meshes. While numerous research results have been reported for time-dependent applications
using stabilized �nite elements,2{6 results with high-order spatial discretizations on dynamically evolving
meshes have not been demonstrated for Streamline-Upwind-Petrov-Galerkin (SUPG) discretizations. In
Ref. 7, the current authors presented results for high-order time discretization for viscous, turbulent 
ows,
using the same stabilized �nite-element methodology presented in Refs. 1, 8{10. Here, several blended-
multistep methods, including the Modi�ed-Extended BDF (MEBDF),11, 12 Two Implicit Advanced Step
Point (TIAS),13 and Singly Diagonally Implicit Runge-Kutta (SDIRK)14 schemes have all been extended
to accomodate for mass matrices that depend on the 
ow variables, which occur in stabilized �nite-element
schemes. In that reference, temporal accuracy up to fourth order has been veri�ed using the Method of
Manufactured Solution (MMS)15 and has been demonstrated for time-accurate 
ows on moving domains.
However, the mesh movement in Ref. 7 is limited to rigid-body rotation and, therefore, does not address the
Geometric Conservation Law (GCL), which is necessary when the cell volumes are deforming.

The addition of dynamic mesh capability is a natural extension in the evolving development of this
technology for simulating 
ows at high Reynolds numbers. As with other formulations, a desirable feature
of the discretization is that freestream 
ow can be maintained, regardless of whether the mesh is moving
or stationary. Although stabilized �nite-elements have been used for simulations on dynamic meshes that
satisfy the discrete geometric conservation law for algorithms not based on space-time discretizations,16 these
simulations have been restricted to linear elements with linear deformations assumed between time steps.
Because the long-range plans for this technology include spatially adaptive meshes, as well as adaptation to
locally modify the spatial order of accuracy, a missing component for moving forward is the ability to satisfy
the discrete geometric conservation law on high-order elements with likely curving surfaces.
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The purpose of the current work is to continue the development of stabilized �nite elements for high
Reynolds number aerodynamic 
ows by extending the applicability presented in Ref. 1 and Ref. 7 to include
dynamically deforming meshes. Although high-order temporal accuracy has been previously developed
and demonstrated in Ref. 7, in the present work, only second-order temporal di�erencing is considered for
simplicity. The emphasis here is on developing methodologies that satisfy the geometric conservation with
high-order spatial discretizations and curved meshes, while also maintaining second-order temporal accuracy.

II. Governing Equations

The governing equations are the compressible, Reynolds-Averaged Navier-Stokes equations augmented
with the one-equation Spalart-Allmaras turbulence model17 that has been modi�ed from the original model18

to allow for negative values of the turbulence model working variable and will subsequently be denoted as
the negative SA turbulence model. The equations can be expressed in the following conservative form:

@Q(x; t)
@t

+r � (Fe(Q)� Fv(Q;rQ)) = S(Q;rQ) in 
 (1)

where 
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Here, � , p, and E denote the 
uid density, pressure, and speci�c total energy per unit mass, respectively,
u = (u; v; w) represents the Cartesian velocity vector, and ~� represents the turbulence working variable in
the negative SA model. The pressure p is determined by the equation of state for an ideal gas,

p = (
 � 1)
�
�E �

1
2
�(u2 + v2 + w2)

�
(4)

where 
 is the ratio of speci�c heats, which is 1:4 for air. The subscripts on � represent the components of
the viscous stress tensor, which is de�ned for a Newtonian 
uid as,

�ij = (�+ �T )
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(5)
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where �ij is the Kronecker delta and subscripts i; j; k refer to the Cartesian coordinate components for
x = (x; y; z). � refers to the 
uid dynamic viscosity and is obtained via Sutherland’s law.19 In Eq. (5), �T
denotes the turbulence eddy viscosity, which is obtained from the negative SA model by:

�T =

(
�~�fv1 if ~� � 0
0 if ~� < 0:

(6)

The source term, S, in Eq. (1) is given by S = [0; 0; 0; 0; 0; St]T , where the components for the continuity,
momentum and energy equations are zero. The source term corresponding to the turbulence model equation
takes the following form:17

St = P �D +
1
�
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1
�
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where the production term is given as
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(9)

In Eq. (7), (8), and (9), � denotes kinematic viscosity that is the ratio of dynamic viscosity to density, �=�.
Additional de�nitions associated with the production and destruction terms are given as:17
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where the vorticity vector is given by, �!! = r� u and d represents the distance to the nearest wall.
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The constants in the negative SA model are given as: cb1 = 0:1355, � = 2=3, cb2 = 0:622, ct3 = 1:2,
ct4 = 0:5, �t = 0:41, cw1 = cb1=�2

t + (1 + cb2)=�, cw2 = 0:3, cw3 = 2 cv1 = 7:1, cv2 = 0:7 and cv3 = 0:9. �
and T denote the thermal conductivity and temperature, respectively, and are related to the total energy
and velocity as,

�T = 
(
�
Pr

+
�T
PrT

)
�
E �

1
2

(u2 + v2 + w2)
�

(13)

where Pr and PrT are the Prandtl and turbulent Prandtl number that are set to 0.72 and 0.9, respectively. In
the case of laminar 
ow, the governing equations reduce to the compressible Navier-Stokes equations, where
the turbulence model equation is deactivated and the turbulence eddy viscosity, �T , in the 
uid viscous
stress tensor and the thermal conduction term vanishes.

For the purpose of the spatial discretization, the Cartesian viscous 
uxes are rewritten in the following
equivalent form:

Fxv = G1j
@Q
@xj

; Fyv = G2j
@Q
@xj

; Fzv = G3j
@Q
@xj

(14)

where the matrices Gij(Q) are determined by Gij = @Fxi
v =@(@Q=@xj) for i; j = 1; 2; 3.

III. SUPG Discretization

Before extending the SUPG scheme for dynamic meshes, the methodology is �rst described on a static
mesh for later reference. Here, the SUPG �nite-element scheme is formulated as a weighted residual method,
which can be cast in the form shown below

Z



(N + P )

�
@Q
@t

+r � F� S
�
d
 = 0 (15)

where N and P are weighting functions described further below. The domain of interest is discretized into a
series of nonoverlapping elements, and the �eld variables are assumed continuous across element boundaries.
Single-valued data is stored at the vertices of the elements and the solution is assumed to vary within each
element according to a linear combination of polynomial basis functions

Qh =
nX

i=1

NiQi (16)

Here, Qh represents the dependent variables approximated within each element, Qi is the corresponding
data at the nodes of the element, and each Ni represents a basis function. The weighting function, N , is
composed of a linear combination of the same basis functions used in Eq. (16) for de�ning the variables
within the element. The second contribution to the weighting function, P , is a stabilizing term that provides
dissipation along preferential directions to eliminate odd-even point decoupling that often occurs with a
standard Galerkin scheme, which is obtained if the second contribution is neglected. In the present work,
the Streamlined Upwind Petrov-Galerkin (SUPG) method is used in de�ning the weighting function.20

N [I] + [P ] = N [I] +
�
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[� ] (17)
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where ci are arbitrary constants and [� ] can be obtained using the following de�nitions21
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���� = [T] j�j [T]:�1 (20)
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Here, M corresponds to the number of basis functions within the element and the repeated index, i,j, and k
imply summation over all the values (i; j; k = 1; 2; 3), and the de�nitions of [Gik] corresponds to those given
in Eq. (14).

The matrices [�] and [T ] are the eigenvalues and right eigenvectors, respectively, of the matrix on the left
side of Eq. (20) whereas the inverse of [T ] is given by [T ]�1. The resulting weak statement may be written
as

Z
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@Q
@t
� F � rN �NS)d
 +

Z



[P ]
�
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+r � F� S
�
d
 +

Z

�
NF � nd� = 0 (21)

In evaluating the volume and surface integrals, Gaussian quadrature rules are used where for polynomial
representations of the dependent variables of order p, the volume integrals are evaluated using quadrature
formulas appropriate for integrating polynomials of order 2p. Similarly, surface integrals are integrated using
formulas for integrating polynomials of order 2p + 1.22 Note that because the �eld variables are assumed
to be continuous in the interior of the domain, the surface integral typically vanishes on the boundaries
of the interior elements and need only be evaluated on the boundaries of the domain where appropriate
boundary conditions are applied. In this regard, on solid surfaces for inviscid 
ows, the boundary conditions
are weakly enforced by assuming the normal velocity is zero in the 
ux computations. For viscous 
ows,
strong boundary conditions are currently used to enforce the velocities on the surface of moving bodies.
Using this boundary condition it is easy to verify that the implementation is correct. In the far-�eld, an
approximate Riemann solver is used.23

IV. Arbitrary Lagranian-Eulerian (ALE) formulation

The equations, as provided in Eq. (1), describe the conservation of mass, momentum, and energy for
viscous 
ow in a stationary, Eulerian coordinate system. For a dynamically moving mesh, additional terms
arise in the equations, whose origin is rooted in the transformation of the temporal derivative terms from a
�xed coordinate system to a dynamically evolving one. Because these terms do not a�ect viscous contribu-
tions, the derivations and solution methodology can be illustrated, discretized, demonstrated, and veri�ed
using the inviscid subset of equations obtained by neglecting viscous terms. As such, for brevity, the deriva-
tions, and many of the veri�cation experiments, are restricted to the inviscid subset of equations given in
di�erential form as

@Q(x; t)
@t

+r � Fe(Q) = 0 in 
 (22)

The transformation from a �xed coordinate system to a dynamic one is facilitated by use of the Reynolds
transport theorem24

@
@t

Z


( t)
Qd
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Z


( t)

@Q
@t

d
 +
Z


( t)
r � (QVg)d
 (23)

Here, the �rst integral is evaluated over a time evolving control volume, and Vg is the mesh velocity.
Integrating Eq. (22) over the control volume and substituting Eq. (23), provides the Euler equations

expressed in terms of a time-varying control volume as

@
@t

Z


( t)
Qd
 +

Z


( t)
r � (F�QVg)d
 = 0 (24)

For �nite-volume schemes the above equation is used as the starting point for discretization, where the
domain of interest is divided into discrete control volumes, and the second volume integral is then converted to
a surface integral and integrated numerically. For later reference, note that if constant freestream conditions
are assumed in the integrand of Eq. (24), the following relationship is obtained

@V
@t

=
Z

�
Vg � nd� (25)

where V is the integration volume. While this equation provides an identity relating the change in volume to
the expansion or contraction of its surface, upon discretization, this equation will not necessarily be satis�ed
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under general mesh movements. The result is that in numerical simulations, freestream conditions may not
be maintained. The desired preservation of freestream values in the presence of a deforming mesh is known
as the Geometric Conservation Law (GCL).

For deriving a �nite-element method, one approach is to �rst derive a Galerkin scheme, and then sub-
sequently augment the Galerkin contribution with stabilization. The Galerkin scheme is �rst derived from
the viewpoint of a weighted residual scheme as

Z



N
�
@Q
@t

+r � F
�
d
 = 0 (26)

As with the �nite-volume approach, the Reynolds transport theorem can again be applied after replacing
the integrand in Eq. (23 ) with the product of the basis function and the dependent variable, NQ.
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 (27)

Note that in the manipulation of the Reynolds transport theorem into this form two assumptions have
been made.25 Speci�cally,

@(QN)
@t

= Q
@N
@t

+N
@Q
@t

(28)

and

@N
@t

+ Vg � rN = 0 (29)

This term is the substantial derivative of the weighting function, and is analytically satis�ed because these
functions are independent of time in the Lagrangian coordinates. However, as with Eq. (25), these identities
are not generally satis�ed once discretized.

Upon substitution into Eq. (26), the following form is obtained

@
@t
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d
 +
Z


( t)
Nr � (F�QVg)d
 = 0 (30)

Because a Galerkin formulation lacks su�cient dissipation to provide a robust algorithm, a suitable
stabilization term can then be explicitly added, leading to the following form after subsequent integration of
the Galerkin 
ux contribution by parts:

@
@t

Z


( t)
(N + P )Qd
�

Z


( t)
(F�QVg)) � r(N)d
 +

Z


( t)
Pr � (F�QVg)d
 +

Z

�
NF � nd� = 0 (31)

Note that in the third term on the left-hand side of the equation, mesh speeds have been included to
provide symmetry to the stabilization. Without the mesh speeds, the stabilization term would represent a
strictly Eulerian point of view. Based on the velocities used for Vg, the Galerkin contribution can represent
a point of view ranging from a pure Eulerian to pure Lagrangian formulation. For a given relative oncoming
velocity, the inclusion of the mesh speeds in this term allows consistent results to be obtained independent
of whether the geometry is �xed, or translating.

In deriving the Galerkin formulation, the weighting function, N , does not have dependency on the 
ow
variables. Attempting to formally follow a similar approach using the weighting function, P , starting from
Eq. (15), would not lead to simple relationships such as Eq. (29) thereby rendering this approach to be
somewhat ad hoc. Because of the development of the scheme presented in Eq. (31) is not particularly
rigorous, an alternate approach is taken in the current work.

Returning to Eq. (24) and transforming to a �xed computational domain, the time derivative can be
pulled inside the integral and includes the di�erentiation of the Jacobian to account for the time variation
of the volume in physical space. A weighting function that includes both the Galerkin and Petrov-Galerkin
contributions can then be included, and integration can be performed over the element in the reference space,

Z


 o

(N + P )
�
@(QJ)
@t

+r � (F�QVg)J
�
d
 = 0 (32)
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Two slightly di�erent approaches for treating the time derivative are considered. In the �rst approach,
subsequently referred to as "method 1", the time derivative is re-expressed using the chain rule as

@(QJ)
@t

= Q
@J
@t

+ J
@Q
@t

= QJr �Vg + J
@Q
@t

(33)

where Euler’s expansion formula,26{28 from continuum mechanics, has been used to relate the time rate of
change of the Jacobian to the divergence of the mesh velocities:

@J
@t

= Jr �Vg (34)

After transforming back to physical space, the �nal equation for discretization is given as
Z


( t)
(N + P )

�
@Q
@t

+r � (F�QVg) + Qr �Vg

�
d
 = 0 (35)

In deriving Eq. (35), the time derivative of (QJ) has been rewritten in a nonconservative form. While
common,28{30 this approach requires investigation to quantify potentially undesirable e�ects. Additionally,
this relationship is similar to Eqs. (25) and (29); it is valid at the continuous level, but when evaluated using
discrete formulas, its accuracy should be suspect.

A second approach, henceforth referred to as "method 2", discretizes the conservative form of the time
derivative without �rst using the chain rule. Utilizing a �rst-order accurate temporal discretization for
simplicity, the time derivative can be approximated as31, 32

@(QJ)
@t

�
Qn+1 Jn+1 �QnJn

�t
=

Qn+1 Jn+1 �QnJn

�t
+

QnJn+1 �QnJn+1

�t
(36)

The last term in this equation is identically zero, but allows the equation to be re-written as

@(QJ)
@t

� Qn Jn+1 � Jn

�t
+ Jn+1 Qn+1 �Qn

�t
: (37)

Using the discrete form of Eq. (34), the time derivative may be approximated as

@(QJ)
@t

� QnJn+1 r �Vg + Jn+1 Qn+1 �Qn

�t
: (38)

For �rst-order accurate di�erencing, this expression clearly represents an obvious discretization of Eq. (33),
with the exception being that for method 1, Q is evaluated at time level n+ 1, whereas for method 2, it is
evaluated at time level n. The extension to second-order accurate time di�erencing is straight forward,31, 32

but leads to a slightly more opaque di�erencing of the product of the Jacobian and the derivative of the
dependent variables.

@(QJ)
@t

� QnJn+1 r �Vg + Jn+1
�
1:5
�

Qn+1 �Qn

�t

�
� 0:5

Jn�1

Jn+1

�
Qn �Qn�1

�t

��
: (39)

Although in method 2 the time derivative is initially discretized in conservative form, the discrete form
of Eq. (34) is again used. As with �nite-volume schemes that invoke the discrete form of Eq. (25), and
�nite-element formulations that use Eq. (29), the consequences of using Eq. (34) requires further evaluation,
which will be provided in a subsequent section.

V. Time Advancement

While high-order temporal di�erencing has previously been described in Ref. 7, the primary objective
of the current work is to establish that the discrete geometric conservation law can be satis�ed on dynamic
high-order meshes, and to investigate subtle consequences related to achieving this objective. Therefore, to
advance the solution at each time step, �rst-order (BDF1) and second-order (BDF2) backward time stepping
schemes are used. A pseudotime term is added so that local CFL numbers can be used, with the intent
of being able to robustly take large physical time steps. The scheme is illustrated in Eq. (40) for a BDF1
scheme for simplicity, with obvious extensions for second-order di�erencing.

7 of 22

American Institute of Aeronautics and Astronautics



Q(n+1 ;i+1) �Qn+1 ;i

��
+

Q(n+1 ;i+1) �Qn

�t
+Rs(Qn+1 ;i+1 ;Qn) = R(Qn+1 ;i+1 ;Qn+1 ;i;Qn) (40)

Here, the solution is sought at time level n + 1 whereas i is used to indicate the current solution at each
subiteration within the time step. The pseudotime step, given by �� , is determined locally at each mesh
point based on a speci�ed CFL number. Rs represents the steady-state contribution to the overall residual
whereas R is the complete time-dependent residual for the current time, which will be driven to zero using
a subiterative procedure. At each subiteration, the density, velocity components, temperature, and the
turbulence-model working variable are tightly coupled and updated using a Newton-type algorithm. At each
nonlinear subiteration, the linear system is approximately solved using the generalized minimal residual
(GMRES) algorithm33 with a preconditioner based on an incomplete lower upper (LU) decomposition.34

For the Newton-type algorithm, an initial update to the 
ow variables at the time step is computed
using the locally varying time-step parameter, �� , that is then multiplied by the current CFL number,
which is systematically adjusted within each subiteration of each time step. Initially, the full update of the
variables is added to the current estimate of the solution. The L2 norm of the unsteady residual, including
the pseudotime term, is compared to its value at the beginning of the subiteration. If the L2 norm after
the update is less than one half of the original value, the the CFL number is increased by a multiplicative
factor, which is an input parameter that can be used for examining the e�ects on robustness and e�ciency.
If the L2 norm reduction target is not met, a line search is conducted using four locations along the search
direction to determine an appropriate relaxation factor. Using the four L2 norm values of the residual, the
optimal relaxation factor is determined by locating the minimum of a cubic polynomial curve �t through the
samples. The solution is then updated using the relaxation factor, and the CFL number is neither increased
nor decreased.

VI. Temporal Conservation

The desire for spatial conservation is well known because of its importance in obtaining correct shock
positions for steady 
ows. For unsteady 
ows, temporal conservation can be equally important for obtaining
correct shock propagation speed. For steady 
ows, �nite-volume schemes are conservative by construction
because the 
ux computed on each face of the control volumes is added to the residual on one side of the
interface, whereas it is subtracted from the residual on the other side. The spatial conservative property of
the SUPG scheme has been previously established in Ref. 35 by writing the discretization in the form of a
�nite-volume scheme. An alternate means of establishing conservation is to sum the columns in the matrix
representing the linearization of the steady residual. Because each entry in a column represents the change of
a residual with respect to perturbations in the variable associated with the column, in a conservative scheme,
some residuals in the column will increase, while others will decrease, such that the column sum is zero. This
concept is veri�ed in Figs. 1(a) and (b) for steady inviscid 
ow over an NACA 0012 airfoil at a freestream
Mach number of 0:63 and an angle of attack of 2:0�. The mesh used for this calculation is comprised of
approximately 36,000 triangles with 18,000 nodes, and linear elements are used in the simulation. Figure 1(b)
presents a scatter plot of the column sums associated with perturbations in each of the dependent variables.
Note that only every 50th column is plotted for clarity, but that the column sums not depicted in the �gure
have similar values. As expected, the column sums are zero to machine precision.

The extension for time-dependent 
ows is straight-forward,36 as demonstrated below for a second-order
backward time di�erencing scheme. Here, the linearized residual entries for several time steps are presented
in a single matrix to illustrate the relationships between the linearization of the residuals at the time levels.
In Eq. (41), the matrix entries for the last three time steps are explicitly depicted, whereas previous time
steps are implied using the diagonal dots.
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(a) Pressure distribution. (b) Column sums.

Figure 1. Pressure distribution and column sums for verifying spatial conservation.
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To verify the validity of the approach, column sums for the column indicated in Eq. (41) are computed
for unsteady laminar 
ow over a circular cylinder at a freestream Mach number of 0:2, an angle of attack
of 0� , and a Reynolds number of 120 based on the diameter of the circle. In Fig. 2, velocity contours at
a random point during the time history are shown for solutions obtained with linear, quadratic, and cubic
basis functions, all obtained on a stationary mesh. The maximum column sums obtained using the last three
time steps are shown in Table 1. Note that many of the column sums for the block entry corresponding toh

@RN � 2

@Q N � 2

i
are on the order of 1� 103. Therefore, the sums from the blocks in the column are of similar size but

cumulatively of opposite sign, thereby cancelling thus the column sums are zero to machine precision. Also
note that the columns sums assocated with boundary nodes, as well as nodes connecting to boundary nodes,
are not included in the summation. The reason is due, in part, because of the use of strong enforcement of
the velocity boundary conditions, which subsequently a�ects all of these columns. An important aspect of
this particular example is that the mesh is stationary. The e�ects of moving the mesh, and the implication
for many schemes on dynamic meshes will be studied in a subsequent section.

Table 1. Maximum temporal conservation errors for impulsively started 
ow over circular cylinder on a static mesh.

Element Type Continuity x-momentum y-momentum Energy
Linear 0.3183231456E-11 0.1364242053E-11 0.1534772309E-11 0.9094947018E-12

Quadratic 0.9663381206E-12 0.7958078641E-12 0.6536993169E-12 0.6252776075E-12
Cubic 0.5258016245E-12 0.3694822226E-12 0.3410605132E-12 0.2842170943E-12
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The discretization and time-advancement algorithm described previously has been extended for three-
dimensional turbulent 
ow and is operational as a statically linked library within FUN3D. 1 For initial
veri�cation purposes, a simulation has been conducted for the Baseline Supercritical Wing (BSCW).39, 40

While this con�guration is intended for validation studies for aeroelastic prediction methods, the current
results are only used for a forced oscillation at a subsonic Mach number and comparisons are made with
the �nite-volume capability in FUN3D. The wing, and the surface mesh, are depicted in Fig. 12. For these
calculations, a tetrahedral mesh is used, which is comprised of 17; 463; 974 elements and 2; 964; 728 nodes.
The chord is 16 inches, the span is 32 inches, and the normal spacing at the wall is 0:914� 10� 4 inches.

Figure 12. Mesh for sinusoidally oscillating wing: M 1 = 0 :3, � s = 3 :0� , � u = 1 :0� Re = 4 :56 � 103 , k = 0 :108.

Qualitative comparisons between the �nite-element solution and the �nite-volume solution are given in
Figs. 13 and 14. Here, Fig. 13 depicts pressure contours on the second oscillatory cycle as the wing is
descending through zero degrees angle of attack, whereas Fig. 14 is at a subsequent time when the wing is
ascending through zero. As seen, the solutions qualitatively agree very well.

(a) Finite element. (b) Finite volume.

Figure 13. Pressure contours for sinusoidally oscillating wing at 0:0� #: M 1 = 0 :3, � s = 3 :0� , � u = 1 :0� Re = 4 :56 � 103 ,
k = 0 :108.

Quantitative comparisons between the solutions are shown at the corresponding times in Fig. 15 and
Fig. 16, respectively. In each �gure, comparisons are shown at� = 0 :25, � = 0 :5, and � = 0 :94, where �
is the relative spanwise position on the wing. As seen, the �nite-element and �nite-volume solutions agree
very well with each other at both times during the simulation for all spanwise stations.
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