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Abstract. This paper presents an abstract interpretation framework
for the round-o� error analysis of 
oating-point programs. This frame-
work de�nes a parametric abstract analysis that computes, for each com-
bination of ideal and 
oating-point execution path of the program, a
sound over-approximation of the accumulated 
oating-point round-o�
error that may occur. In addition, a Boolean expression that charac-
terizes the input values leading to the computed error approximation
is also computed. An abstraction on the control 
ow of the program is
proposed to mitigate the explosion of the number of elements generated
by the analysis. Additionally, a widening operator is de�ned to ensure
the convergence of recursive functions and loops. An instantiation of this
framework is implemented in the prototype tool PRECiSA that gener-
ates formal proof certi�cates stating the correctness of the computed
round-o� errors.

1 Introduction

Floating-point numbers are often used as a �nite representation of real num-
bers in computer programs. While 
oating-point numbers o�er a good compro-
mise between e�ciency and precision for most applications, round-o� errors in

oating-point computations may be unacceptably large for some applications. In
particular, in safety-critical systems, even small computational errors may have
catastrophic consequences when they are not appropriately accounted for. To
guarantee the safety of such systems, it is essential to correctly characterize the
di�erence between a computed result and its ideal real number computation and
the impact of this di�erence in the control-
ow of a program.

Signi�cant progress has been made in the last decade in the formal analysis of

oating-point computations [5,8,11,15,26,31]. However, as stated in [2], none of
the proposed approaches provides at the same time (i) a rigorous round-o� errors
analysis that generates externally checkable proofs certi�cates, (ii) the possibility
� Research by the �rst three authors was supported by the National Aeronautics and

Space Administration under NASA/NIA Cooperative Agreement NNL09AA00A.
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V � R, evalA��;A� > R denotes the evaluation of the real arithmetic expression
A with respect to �. Similarly, given ~A > Ȧ and ~� ∶ V̇� F, Éeval Ȧ�~�; ~A� > F denotes
the evaluation of the 
oating-point arithmetic expression ~A with respect to ~�.
The (partial) order relation between arithmetic expressions is de�ned as follows:
A1 B A2 if and only if for all � ∶ V� R, evalA��;A1� B evalA��;A2�.

The round-o� error of the 
oating-point expression öp�~v1; : : : ; ~vn� with re-
spect to the real-valued expressionop�r1; : : : ; rn�, where öp is a 
oating-point
operator representing a real-valued operatorop and ~vi is a 
oating-point value
representing a real valueri, for 1 B i B n, depends of (a) the error introduced
by the application of öp versusop and (b) the propagation of the errors carried
out by the arguments, i.e., the di�erence between ~vi and ri, for 1 B i B n, in the
application. In the case of arithmetic operators, the IEEE-754 standard states
that every basic operation is correctly rounded, therefore it should be performed
as if it would be calculated with in�nite precision and then rounded to the near-
est 
oating-point value. Then, from Formula (2.1), the application of an n-ary

oating-point operator öp to the 
oating-point values ~v1; : : : ; ~vn must ful�ll the
following condition.

SR�öp�~vi�ni�1� − op�R�~vi��ni�1S B
1
2 ulp�op�R�~vi��ni�1�; (2.2)

where the notation f�xi�ni�1 is used to representf�x1; : : : ; xn�.
To estimate how the errors of the arguments are propagated to the result of

the application of the operator, it is necessary to bound the di�erence between
the application of the real operator on real values and the application of the same
operator on the 
oating-point arguments. The expression �op�ei�ni�1 is used to
represent such di�erence, where eachei is a bound of the round-o� error carried
by every 
oating-point ~vi representing a real valueri, i.e., SR�~vi� − riS B ei.
Therefore, �op�ei�ni�1 satis�es the following condition.

Sop�R�~vi��ni�1 − op�ri�ni�1S B �op�ei�ni�1: (2.3)

The following bound of the round-o� error between the 
oating-point expression
and the real-valued counterpart follows from Formula (2.2), Formula (2.3), and
the triangle inequality.

SR�öp�~vi�ni�1� − op�ri�ni�1S B �op�ei�ni�1 +
1
2 ulp�op�R�~vi��ni�1�: (2.4)

In this paper, for a given expression, the round-o� error in the right-hand side
of Formula (2.4) is expressed as an error expression.

De�nition 1 (Error Expression). An error expressionis an arithmetic ex-
pression or the element +∞ representing an arbitrary large round-o� error.

The domain of error expressions is denoted asE and it is de�ned as E ∶� A∪�+∞�.
The order relation on error expressions naturally extends the one on arithmetic
expressions by stating that for all e > E, e B +∞. The function max (respectively
min) returns the maximum (respectively minimum) of a set error expressions
with respect to the order relation B. The tuple �E; B; max ; min; +∞; 0� is a
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complete lattice, wheremax is the least upper bound,min is the greatest lower
bound, +∞ is the greatest element of the domain, and 0 is the least element of
the domain.

Additional conditions are needed in Formula (2.4) when the operators are
not total. For example, when dealing with the division operation, it is necessary
to guarantee that the second argument of both the 
oating-point operator and
the real-valued operator is not zero. Furthermore, some arithmetic operations
are associated to tighter error bounds under certain conditions. These conditions
can be used to re�ne the estimation of the round-o� error. Boolean expressions
are used to model such conditions.

The setsB and Ḃ of Boolean expressions over real numbers and over 
oating-
point numbers, respectively, are de�ned by the following grammar.

B ∶∶� true S false S B ∧B S B ∨B S ¬B S A @ A S A � A

Ḃ ∶∶� true S false S Ḃ ∧ Ḃ S Ḃ ∨ Ḃ S ¬Ḃ S Ȧ @ Ȧ S Ȧ � Ȧ

where B > B, A > A, Ḃ > Ḃ, and Ȧ > Ȧ. The conjunction ∧, disjunction ∨,
negation ¬, true, and false have the usual classical logic meaning.

Given a variable assignment� ∶ V � R, evalB��;B� > �true; false� denotes
the evaluation of the real Boolean expressionB. In the same way, givenḂ > Ḃ
and �̇ ∶ V̇� F, Éeval Ḃ��̇; Ḃ� > �true; false� denotes the evaluation of the 
oating-
point Boolean expressionḂ. The (partial) order relation between Boolean ex-
pressions over real numbers is de�ned as follows:B1 � B2 if and only if for all
� ∶ V � �true; false�, evalB��;B1� implies evalB��;B2�. Similarly, for 
oating-
point Boolean expressions, the order relation is de�ned as follows:̇B1 � Ḃ2 if
and only if for all ~� ∶ V̇ � �true; false�, Éeval Ḃ�~�; Ḃ1� implies Éeval Ḃ�~�; Ḃ2�. The
symbol true (respectively false) is the greatest (respectively least) Boolean ex-
pression of both domainsB and Ḃ. The equivalence relation derived from� is
de�ned as B1 � B2 if and only if B1 � B2 and B2 � B1. In the following, by
abuse of notation, a formulaB > B ∪ Ḃ and its equivalence class will be denoted
with the same symbol.

The function RB ∶ Ḃ� B that converts a Boolean expression on 
oating-point
numbers to a Boolean expression on real numbers is de�ned by simply replacing
each 
oating-point operation with the corresponding operation on real numbers
and by applying R and �r to 
oating-point values and variables, respectively.

Henceforth, it is assumed that for any 
oating-point operator of interest
op there exists at least one formula of the following form that holds for all
e1; : : : ; en > E such that SR�~vi� − riS B ei with 1 B i B n,

�op�ri�ni�1 ∧�öp�~vi�ni�1 implies SR�öp�~vi�ni�1� − op�ri�ni�1S B �öp�ri; ei�ni�1; (2.5)

where �op�ri�ni�1 > B, �op�ri�ni�1 ~� false, �öp�~vi�ni�1 > Ḃ, �öp�~vi�ni�1 ~� false, and
�öp ∶ An × En � E. For the same 
oating-point operator there may be more
than one formula of the form of Formula (2.5). In this case, the disjunction of
all conditions in the left-hand side of Formula (2.5) should be complete for the
domain of the operator. The framework presented in this paper does not require
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those conditions to be disjoint, but better estimations are usually computed
when these conditions are disjoint.

Example 1. Instances of Formula (2.5) for the four basic arithmetic operators
are de�ned below.

{ �~� �r1; e1; r2; e2� ∶� e1 + e2 + 1~2 ulp�Sr1 + r2S + e1 + e2�, �� �r1; r2� ∶� true, and
�~� �~v1; ~v2� ∶� true.

{ �~� �r1; e1; r2; e2� ∶� e1 + e2 + 1~2 ulp�Sr1 − r2S + e1 + e2�, �� �r1; r2� ∶� true, and
�~� �~v1; ~v2� ∶� ~v2

~~2 A ~v1 ∨ ~v1 A 2~∗~v2.
{ �~� �r1; e1; r2; e2� ∶� e1 + e2, �� �r1; r2� ∶� true and �~� �~v1; ~v2� ∶� ~v2

~~2 B ~v1 ∧ ~v1 B
2~∗~v2.

{ �~� �r1; e1; r2; e2� ∶� Sr1Se2+Sr2Se1+e1e2+1~2 ulp��Sr1S+e1��Sr2S+e2��, �� �r1; r2� ∶�
true, and �~� �~v1; ~v2� ∶� true.

{ �~~�r1; e1; r2; e2� ∶�
Sr1Se2� Sr2Se1
r2r2� e2Sr2S

+1~2 ulp�Sr1S� e1
Sr2S� e2

�, �~�r1; r2� ∶� r2 x 0, and�~~�~v1; ~v2�
∶� ~v2 x 0.

For instance, the round-o� error of the sum includes the propagation of the
errors of the operands (e1 and e2) and the error of rounding the result of the sum
(1~2 ulp�Sr1−r2S+e1+e2�). In the case of the division operator, Boolean conditions
are used to guarantee the validity of the operation, i.e., the conditions�~ and
�~~ state that the divisors of the real and 
oating point expressions, respectively,
are di�erent from zero. In the case of the subtraction operator, conditions that
improve the error approximation are provided. Indeed, in [14], it is proven that
the 
oating-point subtraction x ~− y is computed exactly wheny~~2 B x B 2~∗ y.

3 Concrete Denotational Semantics

This section presents a compositional structural denotational semantics for a
generic declarative programming language. This semantics collects information
about the round-o� error of 
oating point operations and relies on the 
oating-
point error formalization presented in Section 2. This semantics is an enhance-
ment of the one introduced in [26] and it uses a more expressive domain.

The expression language considered in this paper contains conditionals, let
expressions, and function calls, possibly recursive. Given a seṫ
 of pre-de�ned
arithmetic 
oating-point operations, a set � of function symbols, and a denumer-
able set V̇ of 
oating-point variables, S denotes the set of program expressions.
The syntax of programs inS is given by the following grammar, where the syntax
of 
oating-point arithmetic expressions given in Section 2 is augmented with a
function call.

Ȧ ∶∶� ~d S F�d� S ~x S öp�Ȧ; : : : ; Ȧ� S f�Ȧ; : : : ; Ȧ�

S ∶∶� Ȧ Sif Ḃ then S else S S let ~x � Ȧ in S

where Ȧ > Ȧ, Ḃ > Ḃ, ~d > F, d > R, ~x > V̇, öp > 
̇, and f > �. Bounded recursion is
added to the language as syntactic sugar using the conventionfor�i; j;S ; g� ∶�if
i A j then S else g�j; for�i; j − 1;S ; g��.
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A program is de�ned as a set offunction declarations of the form f�~x1; : : : ; ~xn�
� S , where ~x1; : : : ; ~xn are pairwise distinct variables in V̇ and all free variables
appearing in S are in �~x1; : : : ; ~xn�. The natural number n is called the arity of
f . Henceforth, it is assumed that programs are well-formed in the sense that for
every function call f�~x1; : : : ; ~xn� that occurs in a program P , a unique function
f of arity n is de�ned in P . The set of programs is denoted asP.

The proposed semantics collects, for each program path, the corresponding
path conditions (for both the real and the 
oating-point execution), and two
expressions representing (1) the value of the output assuming the use of real
arithmetic and (2) an upper bound for the accumulated round-o� error that
might a�ect the result due to 
oating-point operations. Since the semantics col-
lects information about real and 
oating-point execution paths, it is possible to
consider the error of taking the incorrect branch compared to the ideal execution
using real arithmetic. This enables a sound treatment of unstable tests.

De�nition 2 (Test Stability). A conditional statement if ~� then ~E1 else ~E2
is said to be unstable if there exist two assignments ~� ∶ V̇ � F and � ∶ V � R
such that for all ~x > V̇, ���r�~x�� � R�~��~x�� and evalB��;RB�~��� x Éeval Ḃ�~�; ~��.
Otherwise the conditional expression is said to be stable.

In other words, a conditional statement is unstable when there exists an assign-
ment from the variables in ~� to F such that ~� and RB�~�� evaluate to di�erent
Boolean values.

A condition is a set of pairs of the form��; ~��, with � > B and ~� > Ḃ. The
domain of conditions is �℘�B × Ḃ�; �̂ ; ∨̂ ; ∧̂ ; ��true; true��; ��false; false���,
where

{ �̂ is the order relation over ℘�B × Ḃ� de�ned as for all �1; �2 > ℘�B × Ḃ�,
�1 �̂ �2 if and only if ��b1;~b1�>�1

�b1 ∧~b1� � ��b2;~b2�>�2
�b2 ∧~b2�,

{ the equivalence relation�̂ derived from �̂ is de�ned as follows,�1 �̂ �2 if
and only if �1 �̂ �2 and �2 �̂ �1, and the equivalence class of a condition�
is denoted as����̂,

{ ∨̂ is the least upper bound de�ned as�1 ∨̂ �2 � ��1 ∪ �2��̂,
{ ∧̂ is the greatest lower bound de�ned as�1 ∧̂ �2 � ���b1 ∧ b2;~b1 ∧ ~b2� S

�b1;~b1� > �1�b2;~b2� > �2�,
{ ��true; true�� is the greatest element of the domain, and
{ ��false; false�� is the least element of the domain.

Paths in the control 
ow of a program are represented by sequences, possibly
empty, of 0’s and 1’s.

De�nition 3 (Decision path). A decision path � is de�ned by the grammar
� � " S � ⋅ 0 S � ⋅ 1, where " denotes the empty path and ⋅ is the concatenation
operator.

The domain of all decision paths is denoted byPath. A decision path � mod-
els all the decision paths�� such that � is pre�x of �� . Given �1; �2 > Path,
the order relation on decision paths is de�ned as�1 Bpre�x �2 if and only if
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�1 is a pre�x of �2. A decision path univocally identi�es a subprogram or subex-
pression inside the input program. Subexpressions corresponding to thethen
branch of a conditional statement are identi�ed by the index 1. Conversely, the
subexpressions corresponding to theelse branch are identi�ed by the index 0.
For example, consider the following program expression:

E �if ~x A 0 then �if ~y A 2 then 5 else ~y + 1� else �if ~z A 0 then ~x + ~z else ~y ∗ ~z�

All the decision paths of expressionE are identi�ed by ". The path corresponding
to the arithmetic expression ~y+1 is 1⋅0, and the path corresponding to expression
~x + ~z is 0 ⋅ 1.

The semantics collects information in the form ofconditional error bounds.

De�nition 4 (Conditional Error Bound). A conditional error bound is an
expression of the form ‘�et� �r; e��, where � > ℘�B× Ḃ�, r > A, e > E, � > Path,
and t > �s;u�. A conditional error bound is said to be valid if it exists ��; ~�� > �,
� ~� false and ~� ~� false.

Intuitively, ‘�et� �r; e�� indicates that for the decision path�, if the condition �
is satis�ed, the output of the ideal real numbers implementation of the program
is r and the round-o� error of the 
oating-point implementation is bounded
by e. The sub-index t is used to mark by construction whether a conditional
error bound is unstable (t � u), or stable (t � s).

Conditional error bounds are ordered in the following way‘�1et1 � �r1; e1��1B
‘�2et2 � �r2; e2��2 if and only if �1 �̂ �2; r1 � r2; e1 B e2; �2 Bpre�x �1; and t1 �
t2. The domain C of conditional error bounds is de�ned as a set of tuples in
℘�B × Ḃ� × A × E × Path × �s;u�. Sets of conditional error bounds are (par-
tially) ordered as follows. For all C1;C2 b C, C1 Z C2 if and only i� for all
c1 > C1, there exists c2 > C2 such that c1 B c2. The equivalence relation de-
rived from Z is de�ned as C1 � C2 if and only if C1 Z C2 and C2 Z C1. In
the following, by abuse of notation, the quotient of Z over equivalence classes
will be denoted with the same symbol. Furthermore, sets of conditional error
bounds will be used modulo� and their class will be denoted asC. The do-
main �C; Z ; *; (; �C��; ∅� is a complete lattice where the least upper bound
is de�ned as C1 ⊔C2 ∶� �C1 ∪ C2�� and the greatest lower bound is de�ned as
C1 ⊓C2 ∶� ��c > C S ∃c1 > C1:c B c1; ∃c2 > C2:c B c2���.

An environment is de�ned as a function mapping a variable to a set of con-
ditional error bounds, i.e., Env � V̇ � C. The empty environment is denoted as
�Env and maps every variable to the empty set∅. Let M ∶� �f�~x1; : : : ; ~xn� S f >
�; ~x1; : : : ; ~xn > V̇� be the set of all possible function calls. Aninterpretation is a
function I ∶M � C modulo variance3. The set of all interpretations is denoted as
I. The empty interpretation is denoted as �I and maps everything to∅.

Let öp be an n-ary 
oating-point operator in 
̇ such that op in 
 is its
real-valued counterpart and there exist �öp ∶ An × En � E, �op�ri�ni�1 > B and

3 Two functions I1 ; I2 ∶M � C are variants if for each m > M there exists a renaming
� such that �I1�m��� � I2�m��.
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�öp�~vi�ni�1 > Ḃ such that Formula (2.5) holds. Given � > Env and I > I, the se-
mantics of program expressions,E ∶ S × Env × I × Path � C, returns the set of
conditional error bounds representing an upper bound of the round-o� error for
each execution path, together with the corresponding conditions. The function
�e ∶ V̇ � V associates to each 
oating-point variable ~x a variable in V repre-
senting the error of ~x. In the following, for the sake of simplicity, the singleton
condition ‘���; ~���e will be denoted as‘�; ~�e.

EJ~dK���;I� ∶� �‘true; truees � �R�~d�;0���

EJF�d�K���;I� ∶� �‘true; truees � �d; Sd − F�d�S���

EJ~xK���;I� ∶�
¢¤¤ƒ¤¤⁄

�‘true; truees � ��r�~x�; �e�~x���� if ��~x� � ∅
��~x� otherwise

EJöp�Ȧi�ni�1K���;I� ∶�

+�‘
n

�
i�1
�i ∧ �op�ri�ni�1 ;

n

�
i�1

~�i ∧ �öp�Ȧi�ni�1es � �op�ri�ni�1 ; �öp�ri; ei�ni�1�
� S∀1 B i B n∶

‘�i; ~�ies � �ri; ei��i> EJȦiK���;I�;
n

�
i�1
�i∧�op�ri�ni�1 ~� false;

n

�
i�1

~�i∧�öp�Ȧi�ni�1 ~� false�

EJlet ~x � Ȧ in SK���;I� ∶� EJSK����~x(EJȦK���;I��;I�

EJif Ḃ then S1 else S2K���;I� ∶� EJS1K��1
��;I� ��RB�Ḃ�;Ḃ� ⊔ EJS2K��0

��;I� �� RB�Ḃ�; Ḃ� ⊔

+�‘�2 ; ~�1eu � �r2 ; e1 + Sr1 − r2 S�" S ‘�1 ; ~�1et1 � �r1 ; e1��1 > EJS1K��0
��;I�;

‘�2 ; ~�2et2 � �r2 ; e2��2 > EJS2K��1
��;I�� �� RB�Ḃ�;Ḃ� ⊔

+�‘�1 ; ~�2eu � �r1 ; e2 + Sr1 − r2 S�" S ‘�1 ; ~�1et1 � �r1 ; e1��1 > EJS1K��1
��;I�;

‘�2 ; ~�2et2 � �r2 ; e2��2 > EJS2K��0
��;I�� ��RB�Ḃ�; Ḃ�

EJf�Ȧi�ni�1K���;I� ∶� +�‘�� ∧
n

�
i�1
�i; ~�� ∧

n

�
i�1

~�iet � �r� ; e���
′
S

‘�; ~�et � �r; e��
′
> I�f�~xi�ni�1�;∀1 B i B n∶ ‘�i; ~�ieti � �ri; ei��i > EJȦiK���;I�;

r� � r��r�~xi�~ri�ni�1 ; e
� � e��e�~xi�~ei�ni�1 ; �

� � ���r�~xi�~ri; �e�~xi�~ei�ni�1 ;

~�� � ~���r�~xi�~ri; �e�~xi�~ei�ni�1 ; �
� ∧

n

�
i�1
�i ~� false; ~�� ∧

n

�
i�1

~�i ~� false�

The semantics of a variable ~x > V̇ consists of two cases. If ~x belongs to the envi-
ronment, then the variable has been previously bound to a program expression
S through a let-expression. In this case, the semantics of ~x is exactly the seman-
tics of S . If ~x does not belong to the environment, then ~x is a parameter of the
function. Here, a new conditional error bound is added with two place holders,
�r�~x� and �e�~x�, representing the real value and the error of ~x, respectively.

The semantics of a 
oating-point arithmetic operation öp is computed by
composing the semantics of its operands. The real value is obtained by applying
the correspondent real arithmetic operationop to the real values of the operands,
and the new error bound is obtained by applying �öp to the errors and real
values of the operands. The new conditions are obtained as the combination of
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the conditions of the operands. Predicates�op and �öp represent the additional
constraints needed whenop and öp are not total (as explained in Section 2).

The semantics of the expressionlet ~x � Ȧ in S updates the current environ-
ment by associating to variable ~x the semantics of expressioṅA.

The semantics of the conditional uses an auxiliary operator� for propagating
new information in the conditions.

De�nition 5 (Condition propagation operator). Given b > B and ~b > Ḃ,
‘�et� �r; e�� �

�b;~b�� ‘���;~��>���∧b; ~�∧~b�et� �r; e�� if ���;~��>� �� ∧ b ∧ ~� ∧~b� ~�
false, otherwise it is unde�ned. The de�nition of � naturally extends to sets of
conditional error bounds: given C > C, C �

�b;~b�� �c>C c ��b;~b�.

The semantics ofS1 and S2 are enriched with the information about the fact that
real and 
oating-point execution paths match, i.e., both Ḃ and RB�Ḃ� have the
same value. If real and 
oating point execution paths do not coincide, the error
of taking one branch instead of the other has to be considered. For example, if
Ḃ is satis�ed but RB�Ḃ� is not, the then branch is taken in the 
oating point
computation, but the else would have been taken in the real one. In this case,
the error is the di�erence between the real value of the result ofS2 and the

oating point result of S1. It has been shown that this error is bounded by the
round-o� error of S1 plus the di�erence between the real values ofS1 and S2.
The condition �¬RB�Ḃ�; Ḃ� is propagated in order to model that Ḃ holds but
RB�Ḃ� does not. The conditional error bounds representing this case are marked
with u, denoting that the error is due to an unstable test. The parameter� of
the semantics is augmented by one index that indicates the decision taken: 1 for
the then and 0 for the else branch.

The semantics of a function call combines the conditions coming from the
interpretation of the function and the ones coming from the semantics of the
parameters. Variables representing real values and errors of formal parameters
are replaced with the expressions coming from the semantics of the actual pa-
rameters.

The semantics of a program is a functionF ∶ P × Env � C de�ned as the
least �xed point of the immediate consequence operatorP ∶ P×Env × I� C, i.e.,
given P > P, FJP K ∶� lfp�PJP K� I�, which is de�ned as follows for each function
symbol f de�ned in P :

PJP KI�f �~x1 : : :~xn�� ∶� EJSK"�� Env ;I� if f �~x1 : : :~xn� � S > P: (3.2)

The least �xed point of P is guaranteed to exist from the Knaster-Tarski
Fixpoint theorem [32] sinceP is monotonic over C.

Example 2. Let P be a program composed by the declarationf�~x; ~y� � if ~x A
1 then 3 elseif ~y B 2 then ~x~+~y else ~x~~~y. The semantics of P is de�ned as
FJP K � �3

i�1�si�∪�
6
i�1�ui� where the conditional error boundssi corresponding

to the stable cases are:

s1 � ‘RB�~x A 1�; ~x A 1es � �R�3�;0�1
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s2 � ‘RB�¬�~x A 1�� ∧RB�~y B 2�;¬�~x A 1� ∧ ~y B 2es � ��r�~x� + �r�~y�;

�~� ��r�~x�; �e�~x�; �r�~y�; �e�~y���01

s3 � ‘RB�¬�~x A 1�� ∧RB�¬�~y B 2�� ∧ �r�~x x 0�;¬�~x A 1� ∧ ¬�~y B 2�es �

��r�~x�~�r�~y�; �~~��r�~x�; �e�~x�; �r�~y�; �e�~y���00

The conditional error bounds modeling unstable casesui are six and rep-
resent all the cases when real and 
oating-point 
ows diverge. For instance:
u1 � ‘RB�~x A 1�;¬�~x A 1� ∧ ~y B 2eu � �R�3�; SR�3� − ��r�~x� + �r�~y��S +
�~� ��r�~x�; �e�~x�; �r�~y�; �e�~y���" models a case in which the outermost condi-
tional is unstable, and u2 � ‘RB�¬�~x A 1�� ∧RB�~y B 2�;¬�~x A 1� ∧ ¬�~y B 2�eu �
��r�~x�+�r�~y�; S�r�~x�+�r�~y�−��r�~x�~�r�~y��S+�~~��r�~x�; �e�~x�; �r�~y�; �e�~y���"

models a similar case for the inner conditional.

4 Abstraction Scheme

The semantics presented in Section 3 is not computable since the least �xed point
of the operator de�ned in Equation (3.2) does not converge in a �nite number of
steps for recursive programs. In addition, the sound treatment of unstable tests
provokes an explosion of the number of semantic elements generated when several
nested if-then-else occur in a function. To overcome these problems, this section
presents an abstraction framework for the semantics of Section 3 that limits
the combinatory explosion due to nested if-then-else expressions. A widening
operator is also de�ned to ensure the convergence of the analysis of recursive
programs. This abstraction framework yields a computable abstract semantics
that is suitable for the de�nition of a parametric static analysis of 
oating-point
round-o� errors. The proposed abstract semantics is parametric with respect to
two Galois insertions:

{ �E;B� −−−−−�—��−−−−−−
�E


E
� _E; _B� between (concrete) error expressions and abstract error

expression in the complete lattice� _E; _B ; _⊕ ; _⊗ ; ⊺ _E; � _E�, where _B is the
order relation, _⊕ is the least upper bound (lub), _⊗ is the greatest lower
bound (glb), ⊺ _E is the top, and � _E is the bottom of the domain.

{ �℘�B × Ḃ�; �̂� −−−−−�—��−−−−−−
�B


B
� _B; _�� between (concrete) conditions and abstract

condition in the complete lattice � _B; _� ; _∨ ; _∧ ; ⊺ _B; � _B�, where _� is the
order relation, _∨ is the lub, _∧ is the glb, ⊺ _B is the top, and � _B is the
bottom.

These Galois insertions have to satisfy the following properties:�E�0� � � _E,
�B��false; false�� � � _B, and �B��1 ∧̂ �2� � �B��1� _∧ �B��2�.

The abstract semantics collects approximated information and stores it in an
abstract conditional error bound.

De�nition 6 (Abstract Conditional Error Bound). An abstract condi-
tional error bound is de�ned as a tuple of the form ‘ _�et� �R; _e��, where _� > _B,
R > ℘�A�, _e > _E, � > Path, and t > �s;u�. An abstract conditional error bound is
valid when _� ~_� � _B.
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Abstract conditional error bounds are ordered in the following way:‘ _�1et1 �
�R1; _e1��1 t ‘ _�2et2 � �R2; _e2��2 
� _�1 _� _�2; R1 b R2; _e1 _B _e2; t1 �
t2; and �2 Bpre�x �1.

The merge (collapse) of two abstract error bounds is de�ned as follows.

De�nition 7. Let ‘ _�1et1 � �R1; _e1��1 and ‘ _�2et2 � �R2; _e2��2 be two abstract
conditional error bounds. Their merge is de�ned as ‘ _�1et1 � �R1; _e1��1⊙‘ _�2et2 �
�R2; _e2��2 ∶� ‘ _�1 _∨ _�2et1 � �R1 ∪R2; _e1 _⊕ _e2�mcp��1;�2� if t1 � t2, otherwise it is
unde�ned.

In De�nition 7, the expression mcp� _�� denotes the maximum common pre�x of
a set of decision paths _�. For example, mcp��0 ⋅ 1 ⋅ 0 ⋅ 1;0 ⋅ 1 ⋅ 0 ⋅ 0;0 ⋅ 1�� � 0 ⋅ 1.

As already mentioned, the concrete semantics of Section 3 computes one
conditional error bound for every possible combination of real and 
oating-point
execution path. This guarantees a sound treatment of unstable tests, but four
di�erent conditional error bounds are produced for each if-then-else. As a con-
sequence, computing the semantics can become costly for programs with nested
if-then-else expressions since the number of computed semantics elements grows
exponentially. To overcome this limitation, an abstraction function is introduced
to approximate sets of (concrete) conditional error bounds into sets of abstract
ones. The main idea behind this abstraction is that the semantics is precisely
computed just for a �nite set of decision paths of interests, which are given as
an input of the analysis. The conditional error bounds that correspond to other
decision paths are collapsed together. Since, in general, the errors associated
to unstable cases are several order of magnitude bigger than the ones due to

oating-point rounding, stable and unstable cases are collapsed separately. This
way, the abstraction does not lose too much precision.

The semantics presented in Section 3 is able to compute the conditions under
which an unstable test occurs and to bound the error due to the di�erence
between what is actually computed in the 
oating-point execution and what
should have been computed in the ideal execution on real numbers. In general,
this di�erence is large and, most of the times, one is interested just in knowing if
unstable tests can occur in a program and under which circumstances. For this
reason, the proposed abstraction collapses the unstable conditional error bounds
in a unique expression. Using this approach, the abstract semantics is still able
to soundly deal with unstable tests and to provide a sound approximation of
the conditions under which the instability occurs. It also avoids the burden of
di�erentiating each possible combination of real and 
oating-point paths that
leads to an unstable test.

Given _� > ℘�Path�, let _C _� be the domain composed of sets of abstract
conditional error bounds _C such that for all ‘ _�et � �R; _e�� > _C the following
properties hold.

1. If there exists �� > _� such that �� Bpre�x � then the cardinality of R is 1.
2. If t � s and there is no element in _C of the form ‘ _��es � �R� ; _e���

′
di�erent

from ‘ _�et� �R; _e�� such that for all ��� > _�, it holds that ��� ~Bpre�x �� .
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3. If t � u, then there is no another unstable element in _C of the form ‘ _��eu �
�R� ; _e���

′
di�erent from ‘ _�et� �R; _e��.

Sets of abstract conditional error bounds in _C _� are (partially) ordered as follows.
For all _C1; _C2 > _C _� , _C1 _Z _C2 if and only if for all _c1 > _C1 ∃_c2 > _C2: _c1 t _c2. The
equivalence relation derived from _Z is de�ned as _C1 _� _C2 if and only if _C1 _Z
_C2 ∧ _C2 _Z _C1. In the following, by abuse of notation, the quotient of _Z over

equivalence classes will be denoted with the same symbol. Furthermore, sets of
conditional error bounds will be used modulo _� and their class will be denoted
as _C _� . Given _C1; _C2 > _C _� , their least upper bound is de�ned as follows

_C1 _⊔ _C2 ∶� ���‘ _�et� �R; _e�� > _C1 ∪ _C2 S ∃�� > _�: �� Bpre�x �; t � s��_�∪

C�‘ _�et� �R; _e�� > _C1 ∪ _C2 S ~∃ �� > _�: �� Bpre�x �; t � s�∪

C�‘ _�et� �R; _e�� > _C1 ∪ _C2 S t � u�

(4.1)

The tuple � _C _� ; _Z ; _*; _(; ⊺ _C _�
; ∅� is a complete lattice, where⊺ _C _�

∶� ��‘⊺ _Bet�
�R;⊺ _E�

" S t > �u; s�� is the greatest element of _C _� , ∅ is the least element, and
the greatest lower bound (_() is de�ned as follows _C1 _⊓ _C2 ∶� ��_c > _C S ∃_c1 >
_C1:_c t _c1; ∃_c2 > _C2:_c t _c2��_�.

Given _� > ℘�Path�, the abstraction function � _� collapses together all the
stable abstract conditional error bounds that are not produced from a path in
_�. In addition, it collapses all the unstable conditional error bounds in a unique

one. The abstraction function � _� and its adjoint 
 _� are de�ned as follows and
form a Galois insertion �C;Z� −−−−−�—��−−−−−−−

� _�


 _�
� _C _� ; _Z�.

De�nition 8. Let _� > ℘�Path�, C > C and _C > _C _� , the abstraction and con-
cretization functions are de�ned as follows.

� _��C� ∶� _+�‘�B���et� ��r�; �E�e��� S ‘�et� �r; e�� > C;

∃�� > _�:�� Bpre�x �; t � s� _⊔

C�‘�B���et� ��r�; �E�e��� S ‘�et� �r; e�� > C;

~∃ �� > _�:�� Bpre�x �; t � s� _⊔

C�‘�B���et� ��r�; �E�e��� S ‘�et� �r; e�� > C; t � u�


 _�� _C� ∶� +�‘
B� _��et� �r; 
E�_e��� S ∃‘ _�et� �R; _e�� > _C; r > R�

Lemma 1. Given _� > ℘�Path�, the pair of functions �� _� ; 
 _�� is a Galois in-
sertion between �C;Z� and � _C _� ; _Z�.

Given _� > ℘�Path�, an abstract environment is de�ned as a function mapping
a variable to a set of abstract conditional error bounds, i.e., _Env _� � V̇ � _C _� .
The empty abstract environment is denoted as� _Env and maps every variable to
the empty set ∅.
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Given �� > �M � ℘�Path��, an abstract interpretation is a function _I such
that ∀f�~xi�ni�1 > M, _I�f�~xi�ni�1� > _C ���f�~xi�ni�1�

modulo variance. The set of all
interpretations respecting the aforementioned property is denoted as_I �� . The
empty interpretation is denoted as �_I��

and maps everything to the empty set.
The Galois insertion of De�nition 8 can be lifted to the interpretation level in
the following way.

De�nition 9. Let �� > �M � ℘�Path��, given I > I and _I > _I �� , the abstrac-
tion function for interpretations and its adjoint are de�ned as follows for every
function f�~x�ni�1 de�ned in I.

�� ���I��f�~x�ni�1� ∶� � ���f�~x�ni�1�
�I�f�~x�ni�1��

�
 ��� _I��f�~x�ni�1� ∶� 
 ���f�~x�ni�1�
� _I�f�~x�ni�1��

Lemma 2. Given �� > �M � ℘�Path��, � �� �� ; �
 ��� is a Galois insertion between
�I;Z� and �_I �� ; _Z�, where Z and _Z denotes the natural extension of these order
relations to interpretations.

Given �� > �M � ℘�Path��, abstract interpretation theory [6] de�nes the best
correct abstract version of the semantic operatorP with respect to the Galois
insertion �� _� ; 
 _�� simply as the composition� _�○P○
 _� . Abstract interpretation
theory [6] ensures that the abstract �xpoint semantics _F _� ∶� lfp� _P _� � is the best
correct approximation of F . It is correct because� _��F� _Z _F _� and it is the best
because it is the minimum (with respect to _Z) of all correct approximations.

Example 3. Consider the program of Example 2 and its concrete semantics. Sup-
pose that the selected decision path of interest is 01 and the error expressions
and conditions abstraction functions are the identity. The abstract semantics of
P is de�ned as _F�01�JP K � s2 _⊔ �s1 ⊙ s3� _⊔ B 6

i�1ui.
The conditional error bound s2, corresponding to the decision path of interest

01, is computed precisely. The other two stable bounds are collapsed together
in one abstract conditional error bound of the form s1 ⊙ s3 � ‘RB�~x A 1� ∨
�RB�¬�~x A 1�� ∧ RB�¬�~y B 2�� ∧ �r�~x x 0��; ~x A 1 ∨ �¬�~x A 1� ∧ ¬�~y B 2��es �
��R�3�; �r�~x�~�r�~y��; �~~��r�~x�; �e�~x�; �r�~y�; �e�~y���". The unstable cases are
collapsed together inB 6

i�1ui.

Widening operators [1, 6] provide a solution to the convergence problem by
over-approximating in�nite increasing chains in a �nite number of steps. A
widening operator for the domain of abstract conditional error bounds is de-
�ned. Intuitively, it approximates to the top of the domain when the recursion
is possibly non terminating (the conditions are not changing and the error is
growing), otherwise it tries to converge in k steps for recursion calls that could
terminate (the conditions are changing and they are converging tofalse).
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De�nition 10. Given �� > �M � ℘�Path��, A1;A2 > _C _� such that _C1 _Z _C2,
n1; n2 > N such that n1 B n2, and k > N, the operator ▽k ∶ � _C _� ×N�×� _C _� ×N� �
� _C _� ×N� is de�ned as follows.

� _C1; n1� ▽k � _C2; n2� ∶�

� _+�‘ _�2et2 � �R2;⊺ _E�
�2 > _C2 S ‘ _�2et2 � �R2; _e2��2 > _C2; �n2 A k or

�∃‘ _�1et1 � �R1; _e1��1 > _C1 such that _�1 _� _�2; R1 b R2 and _e1 _@ _e2� � _⊔
_+�‘ _�2et2 � �R2; _e2��2 > _C2 S ‘ _�2et2 � �R2; _e2��2 > _C2; n2 B k;

�~∃ ‘ _�1et1 � �R1; _e1��1 > _C1 such that _�1 _� _�2; R1 b R2 and _e1 _@ _e2� �; n2�

Lemma 3. Given k > N and �� > �M � ℘�Path��, the operator ▽k is a widening
operator on � _C _� ×N�.

Because of Lemma 3 and the results in [1,6] it is guaranteed that, for anyk > N,
�� > �M � ℘�Path��, program P > P and function f�~x�ni�1 de�ned in P , the chain
de�ned as follows converges in a �nite number of steps.

� _I0�f�~x�ni�1�; n0� � �∅;0�

� _Ii� 1�f�~x�ni�1�; ni� 1� �

¢¤¤¤¤¤¤ƒ¤¤¤¤¤¤⁄

� _Ii�f�~x�ni�1�; ni� if _P �� JP K _Ii�f�~x�ni�1� _Z Ii�f�~x�ni�1�
and ni B ni� 1

� _Ii�f�~x�ni�1�; ni� ▽k � _P �� JP K _Ii�f�~x�ni�1�; ni + 1�
otherwise

5 PRECiSA

This section presents the prototype tool PRECiSA4 (Program Round-o� Error
Certi�er via Static Analysis) that implements a possible instantiation of the ab-
straction framework de�ned in Section 4. This tool is an enhancement of the tool
presented in [26]. PRECiSA supports the basic arithmetic operations (addition,
subtraction, multiplication, and division), square root, logarithm, exponential,
trigonometric functions, 
oor, and absolute value. As illustrated in Fig. 1, PRE-
CiSA accepts as inputs a program written in a simple functional language that
follows the grammar in Section 4 or in PVS syntax, initial ranges for the input
variables of the program, and a set of computational paths of interest for each
function in the input program.

PRECiSA computes the abstract semantics presented in Section 4. The con-
ditional error bounds corresponding to the execution paths selected by the user
are computed precisely, while the others are collapsed together. A decision path
of interest intuitively corresponds to a subprogram or subexpression inside a
function of the input program. If the user does not select any subprogram of
interest, the tool will just produce the overall round-o� error for the stable case
and for the unstable one.
4 The web-interface of PRECiSA is available at http://precisa.nianet.org .

http://precisa.nianet.org
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Fig. 1. Functional architecture of PRECiSA.

No additional abstraction is done for errors and conditions. Thus, the Galois
insertions are simply de�ned as�E;B� −−−−�—��−−−−−−

id

id
�E;B� and �℘�B × Ḃ�; �̂� −−−−�—��−−−−−−

id

id

�℘�B × Ḃ�; �̂�. The merge of abstract conditional error bounds will be instan-
tiated as follows ‘ _�1et1 � �R1; _e1��1 ⊙ ‘ _�2et2 � �R2; _e2��2 ∶� ‘ _�1 ∨̂ _�2et1 �
�R1 ∪R2;max�_e1; _e2��mcp��1;�2�.

The semantics presented in Section 4 is completely independent from the in-
put values provided to the program. This makes the proposed approach scalable
since it enables a compositional analysis that reuses already computed results.
However, given the initial ranges for the input variables, it is essential to com-
pute numerical bounds from the (abstract) conditional error bounds. To this
aim, the proposed prototype tool uses the optimizer Kodiak [30] which is based
on the formally veri�ed branch-and-bound algorithm presented in [27]. This
branch-and-bound algorithm relies on enclosure functions for arithmetic opera-
tors. These enclosure functions compute provably correct over approximations
of the symbolic error expressions using either interval arithmetic or Bernstein
basis. The algorithm recursively splits the domain of the function into smaller
subdomains and computes an enclosure of the original expression in these sub-
domains. The recursion stops when a precise enclosure is found, based on a given
precision, or when a given maximum recursion depth is reached. The output of
the algorithm is a numerical enclosure for each symbolic error expression.

Besides computing error bounds, PRECiSA generates proof certi�cates en-
suring that these bounds are correct. Having an externally checkable certi�cate
increases the level of trustworthiness of the proposed tool. PRECiSA relies on the
higher-order logic interactive theorem prover PVS [28] and a 
oating-point for-
malization originally presented in [3] and extended in [26]. Therefore, each com-
puted conditional error bound is translated into a lemma stating that, provided
the conditions are satis�ed, the 
oating-point value resulting from the execution
of f on 
oating-point values di�ers from the exact real-number computation by
at most the round-o� error approximation computed by the semantics. PRECiSA
generates proof scripts that automatically discharge the generated lemmas.

In the following, PRECiSA is compared in terms of accuracy and performance
with the following 
oating-point analysis tools: Gappa (ver. 1.3.1) [11], Fluctuat
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(ver. 3.1376) [15], FPTaylor (ver. 0.9) [31], Real2Float [22], and Rosa [8] (see
Section 6 for a description of each tool). This comparison was performed using
benchmarks taken from the Rosa and FPTaylor repositories. The selected bench-
marks involve nonlinear expressions and polynomial approximations of functions,
taken from equations used in physics, control theory, and biological modeling.
In addition, some extra benchmarks taken from real-world avionics algorithms
are considered. The experimental environment consisted of a 2.5 GHz Intel Core
i7-4710MQ with 24 GB of RAM, running under Ubuntu 16.04 LTS. The bench-
marks presented in this section and the corresponding proof certi�cates are avail-
able as part of the PRECiSA distribution. 5

Table 1 shows numerical round-o� error bounds computed by the aforemen-
tioned tools. Since the considered tools o�ers di�erent con�gurations and options
for the analysis, only the best estimation obtained by each tool for each exam-
ple is reported in the table. In fact, FPTaylor o�ers two di�erent optimization
algorithms and two di�erent rounding models. Gappa and Fluctuat allow the
user to manually provide hints to obtain tighter error bounds. For the sake of
uniformity, for all examples and tools, input variables and constants are assumed
to be real numbers. This means that they carry a round-o� error that has to be
taken into consideration in the analysis. PRECiSA compares favorably to the
other tools in terms of precision. Additionally, it supports a large set of basic
and transcendental operators as well as common programming languages con-
structs such as conditionals and loops. On the contrary, some of the other tools
lack that support, hence, they cannot analyze all the benchmarks. For instance,
the 
oor operator appears in the cpr yz0 and it is not supported by Real2Float,
Rosa, and FPTaylor. Stynlinski and PolyCARP contain conditionals that are
not handled by FPTaylor and Gappa. PRECiSA is the only tool that is able to
analyze the recursive program multpow2 rec.

The times for the computation of the bounds in Table 1 are shown in Table 2.
Overall, Fluctuat is the fastest approach but it does not produce certi�cates for
the soundness of its results. The performance of PRECiSA is in line with similar
tools for most of the examples, and for some of the considered benchmarks
PRECiSA is the fastest approach.

In summary, for the considered examples, the proposed tool provides a good
trade-o� between accuracy and performance together with a wide support for
arithmetic operations and programming constructs.

6 Related Work

The use of abstract interpretation and semantics based approaches for the prob-
lem of analyzing 
oating-point programs is not new. The static analyzer Astr�ee [7]
automatically detects the presence of potential 
oating-point run-time excep-
tions such as over
ows by means of sound 
oating-point abstract domains [4,25].
The abstraction scheme presented here shares some similarities with the ap-

5 The PRECiSA distribution is available at https://github.com/nasa/PRECiSA

https://github.com/nasa/PRECiSA
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Gappa Fluctuat Real2Float Rosa FPTaylor PRECiSA
azimuth n/a n/a 2.83E-13 n/a 8.32E-15 1.19E-13
carbonGas 6.01E-09 1.17E-08 2.21E-08 1.60E-08 5.90E-09 7.17E-09
doppler1 1.61E-13 1.27E-13 7.65E-12 2.68E-13 1.22E-13 1.98E-13
doppler2 2.86E-13 2.35E-13 1.57E-11 6.45E-13 2.23E-13 3.81E-13
doppler3 8.69E-14 7.12E-14 8.59E-12 1.01E-13 6.63E-14 1.09E-13
himmilbeau 8.51E-13 1.00E-12 1.42E-12 1.00E-12 1.00E-12 1.00E-12
jet 4.45E+03 1.07E-10 n/a 4.91E-09 1.03E-11 1.59E-11
kepler0 1.09E-13 1.03E-13 1.20E-13 8.28E-14 7.47E-14 1.06E-13
kepler1 4.68E-13 3.51E-13 4.67E-13 4.14E-13 2.86E-13 3.90E-13
kepler2 2.38E-12 2.24E-12 2.09E-12 2.15E-12 1.58E-12 1.53E-12
predatorPrey 1.67E-16 2.35E-16 2.51E-16 1.98E-16 1.59E-16 1.84E-16
rigidBody1 2.95E-13 3.22E-13 5.33E-13 3.22E-13 2.95E-13 2.95E-13
rigidBody2 3.61E-11 3.65E-11 6.48E-11 3.65E-11 3.61E-11 3.60E-11
sine 6.91E-16 7.41E-16 6.03E-16 5.18E-16 3.87E-16 6.37E-16
sineOrder3 6.54E-16 1.09E-15 1.19E-15 9.96E-16 5.94E-16 1.17E-15
sphere n/a n/a 1.52E-14 n/a 8.11E-15 9.99E-15
sqroot 5.35E-16 6.83E-16 1.28E-15 6.18E-16 5.01E-16 4.29E-16
t div t1 9.99E+00 2.80E-12 8.53E-16 5.68E-11 2.22E-16 3.91E-15
turbine1 2.41E-14 3.09E-14 2.46E-11 5.99E-14 1.66E-14 2.17E-14
turbine2 3.32E-14 2.59E-14 2.07E-12 7.67E-14 1.99E-14 2.81E-14
turbine3 3.52E-01 1.34E-14 1.70E-11 4.62E-14 9.55E-15 1.22E-14
verhulst 2.84E-16 4.80E-16 4.66E-16 4.67E-16 2.47E-16 3.74E-16
PolyCARP (stable) n/a 1.89E-15 n/a n/a n/a 1.83E-15
PolyCARP (unstable) n/a n/a 6.60E+00 n/a n/a 6.00E-01
Stynlinski (stable) n/a 2.29E-14 n/a 2.31E-14 n/a 4.28E-14
Stynlinski (unstable) n/a 2.29E-14 n/a 2.31E-14 n/a 1.61E+02
cpr yz0 1.35E+05 1.31E+05 n/a n/a n/a 1.31E+05
logExp n/a n/a 2.52E-15 n/a 1.49E-15 3.22E-15
hartman3 n/a n/a 2.99E-13 n/a 3.26E-15 1.58E-14
hartman6 n/a n/a 5.07E-13 n/a 5.26E-15 2.24E-13
mult pow2 rec (stable) n/a n/a n/a n/a n/a 7.11E-15

Table 1. Experimental results for absolute round-o� error bounds ( bold indicates the
best approximation, italic indicates the second best.)

proach of [19] where the analysis is re�ned by partitioning the program with
respect to its control 
ow.

Some semantics-based approaches have been proposed to estimate the round-
o� error of a program. In [23], a family of abstract semantics parametric with
respect to the error order and to a partition of the program is proposed for

oating-point round-o� errors. In [17], several abstract semantics for the static
analysis of �nite precision computations are de�ned. In contrast to the approach
presented in this paper, the abstract semantics in [23] and [17] are not compo-
sitional since in these approaches the error is computed starting from a set of
input ranges for the initial variables.

Diverse analysis techniques and tools to estimate the round-o� error of 
oating-
point computations have been proposed in the literature. Fluctuat [15] is a com-
mercial analyzer that accepts as input a C program with annotations about input
bound and uncertainties, and it produces bounds for the round-o� error of the
program expressions decomposed with respect to its provenance. Fluctuat uses
a zonotopic abstract domain [17] that is based on a�ne arithmetic [12]. It is able
to soundly treat unstable tests as explained in [18] and it provides support for
iterative programs by using the widening operators introduced in [13, 16]. The
widening operator presented in this paper is di�erent from the ones of [13, 16]
in that it takes advantage of the information contained in the path conditions.
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Gappa Fluctuat Real2Float Rosa FPTaylor PRECiSA
azimuth n/a n/a 1.986 n/a 26.050 5.204
carbonGas 2.130 0.062 0.776 26.734 0.497 0.090
doppler1 3.475 6.904 5.957 17.293 1.280 0.447
doppler2 3.456 6.835 5.934 18.336 1.504 0.402
doppler3 3.604 6.837 5.846 26.996 1.449 0.419
himmilbeau 1.636 0.013 0.193 4.478 0.473 0.106
jet 8.604 1.033 n/a 264.811 2.457 255.278
kepler0 8.107 9.467 0.203 3.377 2.813 2.878
kepler1 2.088 0.430 8.509 132.313 1.642 8.964
kepler2 9.303 2.233 6.630 63.256 0.743 345.785
predatorPrey 1.259 0.019 0.684 26.452 0.521 0.021
rigidBody1 0.030 0.013 0.434 0.298 0.427 0.049
rigidBody2 0.047 0.014 0.272 2.752 0.470 1.035
sine 4.147 0.022 0.872 4.513 0.625 0.631
sineOrder3 1.966 0.017 0.296 0.771 0.437 0.021
sphere n/a n/a 0.033 n/a 35.116 0.020
sqroot 4.968 0.014 0.713 1.328 43.428 0.047
t div t1 0.160 0.017 34.656 6.207 0.418 0.021
turbine1 6.222 5.410 67.599 19.254 62.760 1.746
turbine2 4.185 4.311 3.927 6.483 44.138 2.003
turbine3 6.927 5.417 66.991 20.642 62.623 4.569
verhulst 0.346 0.018 0.425 7.730 0.418 0.019
Polycarp (stable) n/a 0.013 n/a n/a n/a 0.018
Polycarp (unstable) n/a n/a 0.024 n/a n/a 0.018
Stynlinski (stable) n/a 0.266 n/a 58.543 n/a 16.376
Stynlinski (unstable) n/a 0.313 n/a 58.543 n/a 16.376
yz0 7.177 0.014 n/a n/a n/a 0.249
logExp n/a n/a 0.664 n/a 0.389 0.026
hartman3 n/a n/a 1.760 n/a 84.147 44.309
hartman6 n/a n/a 87.582 n/a 2191.622 4320.212
mult pow2 rec (stable) n/a n/a n/a n/a n/a 0.037

Table 2. Times in seconds for the generation of round-o� error bounds and certi�cates
(bold indicates the best time, italic indicates the second best.)

RangeLab [24] is an interactive tool that determines the range of the round-
o� errors for elementary arithmetic expression based on the semantics of [23].
RangeLab is able to deal with while loops by means of a widening operator based
on the classical interval domain widening. However, it does not provides a sound
approximation of unstable conditionals. RangeLab and Fluctuat do not generate
formal certi�cates for the computed bounds and they are not compositional.

FPTaylor [31] uses symbolic Taylor expansions to approximate 
oating-point
expressions and applies a global optimization technique to obtain tight bounds
for round-o� errors. In addition, FPTaylor emits certi�cates for HOL Light [20]
except for the con�gurations that use an improved rounding model that cor-
relates error terms and allows much tighter error bounds [2]. Because of the
technique used by FPTaylor, it is restricted to smooth functions. Unlike PRE-
CiSA, which targets programs with conditional and function calls, FPTaylor is
designed to analyze arithmetic expressions. FPTuner [5] uses FPTaylor to imple-
ment a rigorous approach to precision allocation of mixed-precision arithmetic
expressions.

VCFloat [29] is a tool that automatically computes round-o� error terms for
numerical C expressions along with their correctness proof in Coq. This tool
uses interval arithmetic to approximate the error bounds and generates valid-
ity conditions on the expressions. Similarly to FPTaylor, VCFloat targets only
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arithmetic expressions. Real2Float [22] computes certi�ed bounds for round-o�
errors by using an optimization technique employing semide�nite programming
and sum of square certi�cates. Real2Float at the moment does not handle de-
normal 
oating-point numbers nor loops. Gappa [11] computes enclosures for

oating-point expressions via interval arithmetic. This enclosure method enables
a quick computation of the bounds, but may result in pessimistic error estima-
tions. Gappa also generates a proof of the results that can be checked in the Coq
proof assistant. In Gappa, the bound computation, the certi�cation construction,
and their veri�cation may require hints from the user. Thus, some level of ex-
pertise is required, unlike PRECiSA, which is fully automatic. Rosa [8,9] uses a
compilation algorithm that, from an ideal real-valued implementation, produces
a �nite-precision version (if it exists) that is guaranteed to meet a given desired
precision. Rosa soundly deals with unstable tests and with bounded loops with
bounded variables.

7 Conclusion

In this paper, a semantic framework based on abstract interpretation has been
presented with the aim of providing a parametric round-o� error static analysis
for 
oating-point programs. The abstract semantics de�ned by this framework
enjoys several features. It is de�ned in a compositional way, which allows for an
incremental, modular, and e�cient treatment of the program being analyzed.
This makes the analysis de�ned upon this framework scalable and reusable.
Moreover, the semantics is able to deal with any 
oating-point operator provided
the existence of a round-o� error estimation that satis�es Formula (2.5). Finally,
recursion and conditionals are soundly handled.

The semantic analysis proposed in this paper is sound with respect to un-
stable tests and it associates conditions to the computed error estimation. This
makes the analysis more precise since di�erent execution paths may lead to
di�erent round-o� errors. The proposed technique also avoids considering com-
putations that lead to runtime errors such as division by zero or square root
of a negative number. Additionally, the information collected in the conditions
is used to discard impossible execution paths and to characterize initial input
values that may cause large round-o� errors.

PRECiSA is an implementation of the proposed framework that, addition-
ally, generates proof certi�cates ensuring the correctness of the computed error
bounds. In future work, the authors plan to integrate in PRECiSA other abstract
domains such as a�ne arithmetic and a compositional version of the symbolic
Taylor expansions of [31]. This way, the most suitable domain can be chosen
depending on the input program and on the desired tradeo� between e�ciency
and precision. Another interesting future direction is the integration of PRE-
CiSA with the static analyzer Frama-C [21]. This integration will enable the
automated formal veri�cation of C 
oating-point programs.
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