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Abstract. Microwave heating is a time-varying, non-linear process. Mechanism modeling of 

the microwave thermal process is extremely difficult because of the complex microwave 

heating environment. This paper presents a recurrent fuzzy quantum neural network with full 

feedbacks (RFQNN) for prediction and identification of dynamic systems and the actual 

microwave heating process. In the RFQNN, a quantum neural network is introduced to the 

consequent part of the fuzzy rules to improve the mapping ability and the identification 

precision. All of the rules are generated and learned online through a simultaneous structure 

and parameter learning. During the structure learning, an online clustering algorithm combined 

with Mahalanobis distance elimination algorithm perform effectively in generating or 

removing fuzzy rules. And then a gradient descent algorithm is introduced to update the 

parameters during the parameter learning process. And finally, we test the RFQNN by dynamic 

plants and the microwave thermal process. The results show that it performs well in dynamic 

system processing compared with other recurrent fuzzy neural networks. 

1. Introduction 

Microwave is a novel, green and efficient energy source, which is widely used in both domestic and 

industry as a source of heat energy, such as food heating, sintering, drying, etc. However, there is a big 

challenge in the mechanism modeling of the dynamic microwave thermal process because of the non-

uniformity of the electric field and the complex microwave heating environment. Researchers 

proposed some models for microwave heating process. Akkari et al.[1] proposed a model of heat 

transfer with a source term in microwave-assisted food thawing process. Yuan, Liang, etc.[2] proposed 

a one-dimensional heat and mass transports model in microwave drying process of unsaturated porous 

materials. Zhou and Puri et al.[3] proposed a three-dimensional finite element modeling of heat and 

mass transfer method in food materials microwave heating process. Nevertheless, almost all the 

models can only be applied to specific microwave heating equipment, specific heating media and 

specific application environment. Model parameter data obtained in one separate experiment cannot be 

applied directly to different media or the same media in different application environment. Therefore, 

the proposed microwave heating model must have the ability to adapt to different application 

environments, i.e., possesses the capacity of self-learning and generalizing.  

In recent years, some researchers, for example, Murthy and Manohar et al.[4], and Chen et al.[5], 

Poonnoy et al.[6], Yousefi, Zahra et al.[7]have employed multilayer feed-forward neural networks to 

predict heating temperature, moisture content, drying rate and so on in microwave thermal process. 
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However, the multilayer feed-forward perceptron neural networks (MFNN) those studies used have 

many kinds of shortcomings, such as large numbers of hidden neurons, Inappropriate network 

structure and the limitation of generalizing ability. And also, MFNN cannot work well for dynamic 

systems because of the unknown dependency of past inputs and past outputs. 

For dynamic system processing, recurrent fuzzy neural networks (RFNNs) has been widely 

researched in areas such as time-varying system identification, unknown dependency time-series 

prediction, pattern recognition, and signal processing. Recent studies show that some RFNNs 

outperform feed-forward fuzzy neural network (FNN) and recurrent neural network (RNN) in solving 

the time-varying characteristics of dynamic systems[8]. Roh, Wang and Ahn[9] optimized the 

conventional RFNN and applied it in time series prediction of dynamic systems. Results show that the 

prediction performance is better than general RFNN. In order to overcome the uncertainties of SMC, 

Lin, Chen and Sun[10] employed recurrent wavelet fuzzy neural network (FWRNN) to an intelligent 

sliding mode position control  as a uncertainty estimator of electrical power steering system. Although 

those proposed RFNNs can get good performance and accuracy in some specific systems. However, 

the fixed structure of these recurrent FNNs limits the flexibility and generalization ability compared 

with self-evolving recurrent fuzzy neural networks (RSFNN). Juang, Lin and Tu[11] proposed a 

recurrent self-evolving fuzzy neural network with local feedbacks (RSEFNN), which feeds the firing 

strength of a fuzzy rule to itself. Lin and Chang[12] improved RSEFNN by introducing a functional-

link neural network to the consequent part of the network and feeding firing strength of each recurrent 

node output to itself and others. Pratama, Lu et al.[13] introduced an evolving type-2 recurrent fuzzy 

neural network to solve the data uncertainty and temporal behavior problems of the concept drifts by 

an incremental learning algorithm. However, those neural networks do not take into account the 

removing of redundant structures and a functional expansion of the input vector leads to a large 

number of consequent parameters that limits the parameter learning rate of the network. To overcome 

these disadvantages, some researchers combined recurrent neural network with quantum neural 

network (QNN) to enhance the computing ability and learning rate of the network. Gandhi, Arora et 

al.[14] presented a recurrent quantum neural network (RQNN) for a brain-computer interface to 

enhance the EEG signal. Ganjefar, Tofighi and Karami[15] combined fuzzy wavelet neural network 

with QNN in a control design to enhance the stability of multi-machine power system. The above 

studies indicate that the combination of QNN and other neural network can enhance the performance 

of the network in some degrees. 

In this paper, a quantum neural network is introduced to the consequent part of the RFNN with less 

consequent parameters to be updated and superfast calculation ability. The proposed RFQNN has 

stronger generalization ability and higher identification accuracy under the same training epochs. 

Similar to the self-evolving RFNNs, the RFQNN also contains two learning steps: structure learning 

and parameters learning. For structure learning, the RSFNN uses an efficient rule and fuzzy set 

generation algorithm, and takes into account of deleting redundant fuzzy rules by considering the 

distance between two rules and persistently insignificant time. For parameters learning, a fast and 

effective gradient descent algorithm is introduced to update the parameters online. And then we 

conduct several simulations to assess the RFQNN’s performance and compare the RFQNN with some 

other existing models. 

2. RFQNN Structure 

Suppose that the dynamic system to be processed is a multi-input multi-output (MIMO) system. 

Figure 1 shows a seven-layered RFQNN with n  input and 
on  output variables. We will discuss the 

function of each layer in detail next. To make more understanding, we will use some symbols to 

replace the relationship between each layer and the mathematical function of each node. The input and 

the output to the i-th node in layer l of the networkis represented as ( )l

iu  and ( )l

iO , respectively. 

Layer1 (Input Layer):The training data 1 2( , , , )nx x x x  are fed as inputs to the first layer. 

Although there is no need to include past states in the training inputs on account of the recurrent 

structure, it is allowed in this paper. Weights to be adjusted in this layer are absent. 
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Layer2 (Fuzzification Layer): Fuzzification is performed in this layer, and we define a Gaussian 

membership function in each node of this layer. For the i-th fuzzy set i

jA  on the input variable
jx , j=1, 

2, …, n, a Gaussian membership function is computed by equation (1) 
2

2

2 1
( ) exp

2

i

j ji

j j ij i

j

u c
x O



   
      

   

and 2 1

j ju O                                             (1) 

 
Figure 1. RFQNN structure 

           

Layer3 (Spatial firing Layer): In this layer, each node corresponds to one fuzzy rule that represents 

the firing strength. To obtain the spatial firing strength, each node of this layer performs a fuzzy meet 

operation on inputs it receives from layer 2 using an algebraic product operation. There are M nodes 

that is M fuzzy rules generated in this layer and the spatial firing strength is computed by 

3 (3)

1

n

i i j

j

O u


  , and (3) 2

j ju O                                                    (2) 

where 1,2, ,i M , and M is the total number of fuzzy rules. 

Layer4 (Temporal firing Layer): In this layer, each node equipped with some recurrent structures, 

which forms a self-feedback and mutual feedback loop. The temporal firing strength of a recurrent rule 

node, ( )i t , which depends both on the current spatial firing strength, ( )i t , and on the previous 

temporal firing strength, ( 1)k t  . The temporal firing strength is a linear combination function that 

can be expressed as 

q

1

( ) ( ( 1)) (1 ) ( )
M

q q q i

i ik k i

k

t t t    


                                                 (3) 

where
1

=
M

q q

i ik

k

 


 , 1, , oq n and ( ) /q q

ik ik M   ( 0 1q

ik   ), is the rule interaction coefficients between 

itself and other rules. The recurrent weights q

ik initialized to zeros  and determine the ratio that the 

current inputs and previous inputs contribute to the network outputs, respectively. 

Layer5 (Quantization Layer): Each node in this layer performs a quantization operation. The inputs 

of the layer are real values normalized in the range [0,1].  The input layer then converts the real values 

into the phase [0, 2] in quantum states. The conversion process that called quantization characteristic 

representation can be expressed as the following equation: 

(5) (4) (4) (4) (4)

1 1
| cos( ( )) | 0 sin( ( )) |1 cos( | 0 sin( ) |1

2 2

M Mq

i i i k i k i ik k
O O O O O

 
 

 
                 (4) 

Layer6 (Rotation Layer): In this layer, the quantum phase state is initialized to ( )F  , and then each 

node performs a rotation operation on the input quantum phase state. The rotation process is computed 

by 
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where 1

1

sin sin( ( ) (t))

( ) arctan

cos cos( ( ) (t))

M

i i
q i

M
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p t

t

p t
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
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


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Layer 7 (Reversal and Output Layer): Each node in this layer corresponds to a reversal of the 

output quantum state. The initialization state of quantum reversal is given by  , and the output of the 

quantization layer is square root of probability value of quantum state |1  

(7) 1
y = =sin( - (t))

2 1 exp( )

q

q q q
O




 
                                                 (6) 

 

3. RFQNN Learning Method 

The learning process of a RFQNN evolves from simultaneous structure learning and parameter 

learning. Initially, no rules are in a RFQNN. All of the fuzzy rules generate from the simultaneous 

structure and parameter learning after receiving each piece of training data. The proposed model uses 

efficient structure learning algorithm to evolve fuzzy rules and fuzzy sets on-line. A gradient descent 

algorithm is performed in the parameter learning process. 

3.1. Structure Learning 

The structure learning can be divided into two parts: fuzzy rule generation part and redundant rule 

elimination part. It determines whether a new rule should be generated from the training data or an old 

rule should be eliminated for its little contribution to the neural network outputs. 

3.1.1. Fuzzy Rule Generation Part 

The spatial firing strength i  is used to determine whether a new rule should be extracted from the 

training data. The first piece of incoming data point X is used to generate the first fuzzy rule, and the 

mean and width of the Gaussian membership functions related to this rule are set as: 
1

j jm x  and 1

j initial  , 1,2,...,j n                                              (7) 

where 0.3initial   is a pre-specified value. For subsequent new incoming data X, we find the maximum 

spatial firing strength by 

1 ( )
arg max ( )i

i M t
I t

 
                                                               (8) 

where M(t) is the number of existing rules at time t. If ( )I tht f  (
thf  is a pre-specified threshold), then 

a new fuzzy rule is generated and ( 1) ( ) 1M t M t   . For the new generated rule, the mean and width 

of corresponding fuzzy sets are defined as: 
( ) 1M t

j jm x   and 
( ) 1M t I

j j jx m                                                  (9) 

where   is an overlap coefficient and we set 0.5  in this paper. 

3.1.2. Fuzzy Rule Generation Part 

An appropriate number of fuzzy rules can efficiently avoid over-fitting and persistently insignificant 

node. in this paper Mahalanobis distance (M-distance) is used to eliminate the redundant fuzzy rules. 

M-distance is given by: 
2

2
1

( )

2( )

kn
j j

k k
j j

x m
D




  , 1,..  .,k M                                                 (10) 
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For the t-th observed dataset ( , )t tx y , define a discrete set: 

: { | , 1,..., ( )}t k k setD D D k M t                                               (11) 

where 0setD   is a pre-specified threshold. If the number of collection element in 
t satisfies size

max( )t N  , that means too many rules near tx  that would result in an over-fitting problem, then the 

rules with the smallest M-distance should be eliminated. Else if 
kD  satisfies 

k thD D  (
thD  is a pre-

defined upper limit value) for 
maxT  consequent times, then the k-th rule should be pruned for its little 

contribution to the output. 

3.2. Parameter Learning 

For each piece of incoming data, the parameter learning phase occurs simultaneously with the 

structure learning phase.For the sake of clarity, we consider the single-output system case, then the 

objective parameter learning is to minimize the following error cost function 

21
[ ( ) ( )]

2
q dE y t y t                                                          (12) 

where ( )qy t  represents the RFQNN output and ( )dy t  represents the desired output. The parameters are 

updated by a self-adaptive gradient descent algorithm. And we will show the detailed parameter 

update steps next. 

The inversion layer parameter q  is updated by: 

2

cos( ) exp( )
( 1) ( ) ( ) ( )

2 (1 exp( ))

o q
qq q q

q d q

q

yE z
t t t y y

y

 
    

 

 
     

   
                          (13) 

The rotation layer parameter q  is updated by: 

1

1

1 cos cos( ( ) ( ))
cos( )

( 1) ( ) ( )+ ( )

sin sin( ( ) ( ))

M
q q

i io
q iq q q

q dq M
q qq

i i

i

p t t
yE z

t t t y y
y v

p t t

 
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

 





 
        

  
  
 




             (14) 

where

2 2

1 1

cos cos( ( ) ( )) sin sin( ( ) ( ))
M M

q q q q

i i i i

i i

v p t t p t t   
 

   
        
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   

The rotation layer parameter q

i is updated as: 

( ) cos(z ) ( )
( 1) ( ) ( ) ( ) ( ) i i

o q qq
q dq qq q q q

i i i q d iq q q

q i i

y yy yE
t t t y y t

y v

  
     

  

   
       

   
          (15) 

where  
1

cos ( ) ( ) cos( ) cos( ( ) ( ))
M

q q q q q

i i i k k

k

t t t t     


 
    

 
 , and  

 
1

sin ( ) ( ) sin( ) sin( ( ) ( ))
M

q q q q q

i i i k k

k

t t t t     


 
    

 
  

The temporal firing parameter q

ij  is updated as: 

 

1

cos( ) (1 ( )) ( ( 1) ( ))
( 1) ( ) ( )+ ( )

2 ( )

i
i i i

k

o q q q q

iqq q q

ij ij ij q dq M
qq ij

k

z t t tyE
t t t y y

y
t

     
    


 



   
    

 


      (16) 

where
1

( ) ( ) / ( ( ))
Mq q q

i i ii
t t t  


  . 

The antecedent part of parameter i

jc  is updated as: 

 

 
2

1

cos( ) (1 ) (1 ) ( )
( 1) ( ) ( ) ( )

2 ( )

i
i i i

k

o q q q q i

i j jqi i i

j j j q di M
q iq j

j
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z x cyE
c t c t c t y y

y c
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 
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        (17) 
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The antecedent part of parameter i

j  is updated as: 

 

 

2

3

1

cos( ) (1 ) (1 ) ( )
( 1) ( ) ( ) ( )

2 ( )

i
i i i

k

o q q q q i

i j jqi i i

j j j q di M
q iq j

j

k

z x cyE
t t t y y

y
t

     
    


  



   
     
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    (18) 

The learning rate parameter too big or too small, both can influence the convergence of the 

training and test process. To keep fast convergence and stability, therefore, this paper uses a self-

adaptive learning rate. As in [8] the learning rate can be chosen by the asymptotic stability of 

Lyapunov function: 

1 1

=
T

q q

L

y yy y

W W W W


     

   
      

， ， ， ，

                                                 (19) 

where 0<L<2, the parameter L is chosen according to actual applications, and 

1 11 11 11

, , , , ,

T

q q q q q q q q q q q

q q q q q q q q q q

M MM nM nM

y y y y y y y y y y y

W c c       

           
  

           
                       (20) 

 

4. Simulations 

In this section, we apply the RFQNN in the identification and prediction of some well-known dynamic 

systems. We take three examples that include dynamic system identification, chaotic sequence 

prediction and microwave thermal process identification. These examples also compare the 

performance of the RFQNN with some other recurrent FNNs. In the follow examples, some initial 

parameters are set as: =0 , =0.2  , 
1=0.2  , =1L . 

Example 1 (Dynamic System Identification) 

This example uses the RFQNN to identify a nonlinear dynamic system with multiple time delays that 

has been studied in [16]. The dynamic system is described by the following difference equation: 
2( 1) 0.72 ( ) 0.025 ( 1) ( 1) 0.01 ( 2) 0.2 ( 3).p p py t y t y t u t u t u t                             (21) 

This plant output depends on four previous inputs and two previous outputs. In this example we take 

the current state ( )py t  and ( )u t  as the inputs of the RFQNN, and ( 1)py t   as the desired output. As in 

previous studies for training different recurrent models, we use only 10 epochs, with 900 pieces of 

training data each epoch. In each epoch, the input sequence ( )u t is generated by an independent and 

identically distributed uniformly random sequence over [-2, 2] for first 350 time steps, and a sinusoid 

given by 1.05sin( / 45)k  for the remaining time. There is no repetition in these 900 training data, i.e., 

each epoch uses a different training set. The structure learning threshold 
thf  decides the number of 

rules to be generated and the number and the value of M-distance determine the number of rules to be 

pruned. The parameters used in the training process are set as: 0.005thf  , 0.3set  , 0.005setD  ,

15thD  , 3maxN  , 1000maxT  . Three rules are generated during the training process and the test input 

signal is given by 

sin( / 25), 250,

1.0, 250 500,
( )

1.0,

t t

t
u t

  

  


  500 750,

0.3sin( / 25) 0.1sin( / 32) 0.6sin( /10), 750 1000.

t

t t t t  






  
     

                      (22) 

Table 1 shows the root-mean-squared error (RMSE) of the training data. Figure 2 shows a comparison 

of the actual output with the output produced by the RSFNN. The performance of the RFQNN is 

compared with that of some other recurrent models, including a RSONFIN[16], a TRFN[17], a 

WRFNN[18], a RSFNN-TSK[8] and a RSEFNN-LF[11]. These models use a same training condition, 

i.e., include identical numbers of input variables, training data, test data, and training epochs as 
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designed by the RFQNN.From the results of table 1, RFQNN achieves the lowest test RMSE and 

almost the same training RSME to RSEFNN-LF. The fuzzy rules generated by RFQNN are three, so 

that less number of parameters requires to be updated. The above analysis indicates that RFQNN can 

achieve better identification performance than the other recurrent networks. 

 

 

 

 

Figure 2. Outputs of the dynamic plant, 

RSFNN-TSK, RSEFNN-LF and RFQNN in 

Example 1. 

 Figure 3. Test results of MG chaotic series pre-

diction using RFQNN, RSEFNN-LF, RSFNN-

TSK in Example 2. 

Table 1. Performance of RFQNN and other recurrent models for dynamic 

system identification in example 1. 

Models Rules Parameters Training RMSE Test RMSE 

RSONFN [16] 6 36 0.03 0.06 

TRFN [17] 3 33 0.007 0.031 

WRFNN [18] 5 55 0.057 0.083 

RSEFNN-LF [11] 4 32 0.016 0.028 

RSFNN-TSK [8] 7 98 0.017 0.0134 

RFQNN 3 26 0.017 0.0126 

Example 2 (Mackey-Glass Chaotic Series Prediction) 

In this example, RFQNN is employed to predict the Mackey-Glass (MG) chaotic series. The time 

series of the prediction problem is generated by the following delay differential equation: 

10

( ) 0.2 ( )
0.1 ( )

1 ( )

dx t x t
x t

dt x t






 

 
                                                     (23) 

In this study, the time delay parameter   is set to 30, and the initial value (0) 1.2x   . As the same as 

in the previous study, four past values are fed as the input and the current state as the label, and the 

input-output data pattern is given by 

[ ( 24), ( 18), (t 12), ( 6); ( )]x t x t x x t x t    .                                          (24) 

1000 patterns are generated from t=124 to t=1123, where the first 500 patterns are taken as training set 

and the remaining 500 patterns as the test set. The training epoch is set to 500 and the parameters 

during this training process are set as: 0.0005thf  , 2set  , 0.0001setD  , 10thD  , 3maxN  , 500maxT  . 

After training, three rules are generated. Table 2 shows the training performance of the RFQNN and 

some other recurrent FNNs presented in this paper. Figure3 shows the time series prediction results of 

the RFQNN, RSFNN-TSK and RSEFNN-LF.  

The performance of RFQNN is compared with some recently developed fuzzy designed by genetic 

algorithms or neural learning. For a fair comparison, all the models take the same condition as the 



CTCE 2018

IOP Conf. Series: Materials Science and Engineering 466 (2018) 012106

IOP Publishing

doi:10.1088/1757-899X/466/1/012106

8

RFQNN. The prediction errors of the test set are mainly fall in the interval [-0.005,0.005]. And from 

the results of Table 2, FWNN achieves the lowest prediction error, but it may achieve a highest 

training rate because of the generated 16 rules. Although RFQNN achieves relatively lower prediction 

performance in this example, it gets a higher training rate. That is because the consequent part is 

absent in presented neural network and parameters requires to be updated is minimum. 

Table 2. Performance of RSFNN and other recurrent models for MG 

chaotic series prediction in Example 2 

Models Rules Parameters Training RMSE Test RMSE 

FWNN[19] 16 128 0.0023 0.0023 

G-FNN [20] 10 90 - 0.0056 

TRFN [17] 5 95 - 0.0124 

RSEFNN-LF [11] 9 126 0.0032 0.0031 

RSFNN-TSK [8] 3 48 0.0042 0.0036 

RFQNN 3 38 0.0027 0.0026 

Example 3 (The Actual Microwave Heating Process Identification) 

In this section, we will apply RFQNN to learn the actual microwave heating process. Figure 4 shows 

the tunnel-based microwave heating system. The system mainly includes five parts, i.e., microwave 

power source, microwave waveguide, microwave cavity, sensing and acquisition subsystem, and the 

control system. Each of the first two microwave heating cavity has two microwave power sources and 

the last heating cavity only one. To detect the temperature of the heated medium, each microwave 

cavity equipped with an optical fibre temperature sensor and an infrared temperature sensor. The 

sampling temperature data are directly delivered to the computer, where the control algorithm runs. 

The output power of each microwave power source ranges from 0 to 3000W. 

 
Figure 4. Tunnel-based microwave heating system 

During the microwave heating process, rice is served as the heating medium. In order to agree with 

the actual heating process, five heating processes under different input powers are used as the training 

data, i.e., 500, 1000, 1500, 2000, 2500, 3000W. For simplicity, we representatively choose the second 

and the third microwave heating cavity as the identification object. The microwave thermal process of 

the second cavity is chosen as the identification object. Throughout the microwave heating process, we 

collected 2140 patterns of microwave heating data in the second cavity, among which 1712 patterns 

are used as the training data and the remaining as the test data. The input-output format which contains 

four input variables and one label is given by  

1 2 1 2[ ( 1), ( 1), ( 1), ( ), ( ), ( ); ( 1)]u t u t T t u t u t T t T t                                       (25) 

where 1 2( ), ( ),and ( )u t u t T t represent the microwave power of source one and source two and 

temperature at the present moment, respectively. Before training, we have performed normalization 

operations of the training data. And the training epoch is set to 300 and the parameters during this 

training process are set as: 85 10thf   , 0.6set  , 0.0003setD  , 15thD  , 3maxN  , 1000maxT  .For clarity, 

the first 100 prediction outputs of the test data are printed out in figure 5. Figure 5 Shows the 
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prediction results of RFQNN, RSFNN-TSK and RSEFNN-LF for microwave thermal process. The 

temperature test error variation is between 0.5K . Table 3 shows the performance of these RFNNs in 

microwave thermal process prediction. From Table 3 we can see RFQNN achieves the lowest training 

RSME and test RSME. i.e. RFQNN get better performance than RSEFNN-LF in microwave thermal 

process identification. 

 

 

 

Figure 5. Results of Microwave heating process 

prediction using RSFNN-TSK, RSEFNN-LF, 

and RFQNN. 

 Figure 6. The learning result of the reverse 

control in microwave thermal process using 

RSFNN-TSK, RSEFNN-LF and RFQNN 

 

Table 3. Performance of RFQNN, RSEFNN-LF and RSFNN-TSK for 

microwave thermal process identification in Example 3. 

Models Rules Parameters Training RMSE Test RMSE 

RSEFNN-LF[11] 4 128 0.2301 0.5431 

RSFNN-TSK[8] 4 92 0.2273 0.5034 

RFQNN 5 92 0.1926 0.4812 

Table 4. Performance of RFQNN, RSEFNN-LF and RSFNN-TSK in 

reverse control learning of microwave thermal process in Example 3. 

Models Rules Parameters Training RMSE Test RMSE 

RSEFNN-LF[11] 4 51 62.9731 64.1516 

RSFNN-TSK[8] 3 39 62.6112 64.0924 

RFQNN 3 32 61.5344 62.3812 

 

For temperature control during microwave thermal process, RFQNN can be used as a controller 

and we’ve constructed a reverse control block diagram as shown in figure 7. In a reverse control, the 

first step of our objective is to train the RFQNN to emulate the inverse of the controlled plant input-

output mapping relation-ship[24], thus to enhance the performance of RFQNN controller. In this 

section, the microwave thermal process of the third cavity is taken as learning object. During the 

control, the reference temperature ( 1)refy k  , current temperature ( )py k , and last control input ( )u k , are 

fed as the RFQNN inputs. 

To obtain the training samples, sampling data during five heating processes under different input 

powers are used as the training data, i.e., 500, 1000, 1500, 2000, 2500, 3000W. Throughout the 

processes, 1900 patterns of microwave heating data were collected, among which 1500 patterns used 

for training and the remaining used for testing. The training pattern of data is given by equation (26) 
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and the training epoch is set to 300 and the parameters during this training process are set as: 0.1thf  ,

0.3set  , 0.003setD  , 5thD  , 3maxN  , 500maxT  . 

 

[ ( ), ( ), ( 1); ( 1)]p refu k y k y k u k                                                  (26) 

 

Microwave 

Heating System
RFQNN

1z

1z
(t)py

(t 1)py (t 1)u 

(t 1)refy 

(t)u

 

Figure7. The learning process of RFQNN-based reverse control. 

 

Figure 6 shows the learning result of the reverse control in microwave thermal process. The result 

demonstrated that RFQNN can make better prediction of the reverse control output. The test errors of 

the input power are between 10W , which perfectly reflects its predictive performance as a reverse 

controller. Table 4 shows the performance of the models in reverse control learning. From table 4, 

RFQNN achieves the lowest training errors and test errors. 

5. Conclusion 

This paper presented a recurrent fuzzy quantum neural network (RFQNN), for handling dynamic 

system identification and time series prediction problems of time-varying systems. The proposed 

recurrent FNN is effective in modelling dynamic systems because of the online learning manner and 

its interactive recurrent structure. The online structure learning enables the network to find the best 

hidden layer structure of the neural network automatically. Instead of simply assigning the number of 

fuzzy sets being equal to that of rules in each input dimension, the number of rules may increase or 

prune through the fuzzy rule generation algorithm or elimination algorithm. The full feedback 

recurrent structure in the neural network not only stores the local information but also collects critical 

global information. In this study, a quantum computing layer is introduced, which makes full use of 

characteristics of quantum computing to help improve the performance of the network. The 

demonstrated performance of RFQNN, RSFNN-TSK, and RSEFNN-LF show that RFQNN can get 

excellent results in the complex microwave thermal process. 
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