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Abstract. The security of embedded systems has attracted much attention as they are being 
used in more and more fields. The rapid growth and pervasive use of embedded systems make 
it easier for a sophisticated attacker to gain physical access to launch physical attacks on 
insecure off-chip memory and bus. This paper presents a novel hardware-based security 
mechanism to protect confidentiality and integrity of data, preventing the system data from 
being stolen or tampered by a malicious attacker. The proposed mechanism protects the 
confidentiality of data using advanced encryption standard (AES) stream encryption 
algorithm in parallel with the memory access process. This mechanism provides integrity 
protection for data by attaching integrity signatures generated using hash algorithm to data 
stored in external memory. The signature is verified when data is fetched into the chip. The 
security architecture has been tested and validated on the system on a programmable chip 
(SoPC) with OR1200(processor based on OpenRISC1000 architecture) processor. The 
experimental result shows that the proposed security mechanism ensures the integrity and 
confidentiality of system data, introducing low performance penalties.  

1. Introduction 
The rapid development of microelectronics and computer technology has enabled embedded systems 
to be widely used in all spheres of our lives. Embedded systems play an increasingly important role in 
the current people's daily life, which are indispensable to modern communication devices, medical 
equipment, consumer electronics, home appliances, transportation systems, and even weapons systems, 
economy and so on. If a certain embedded system is attacked by the intruder, enhance huge losses. 
Therefore, the security of embedded systems is required by people in these applications. There are 
higher security requirements in some areas, such as military and economy. Consequently, security 
becomes a critical issue in embedded computer systems design and operation.    

Defences for application code and control-flow against security exploits have been studied 
extensively [1]. However, few schemes have been presented to protect the security of program data 
since it is significantly harder than protecting code owing to the highly dynamic of data during the 
entire length of execution. The security of data is a very important part of the security of embedded 
system. The rapid growth and pervasive use of embedded systems makes it easier for a sophisticated 
attacker to gain physical access to launch physical attacks on insecure off-chip memory. With the help 
of advanced electronic equipment, an attacker can control the address/data bus to tap and tamper and 
inject or replay memory blocks when the program data are loading to the processor, resulting to 
leakage of confidential information or destruction of data. 
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In this paper, we propose a hardware-based architecture to protect the confidentiality and integrity 
of data at run-time. In order to prevent the attacker from stealing the confidential or sensitive 
information of the system, the data entering the untrusted area is encrypted, protecting the 
confidentiality of which. During program execution, the data is signed and verified integrity to prevent 
the system data from being corrupted or tampered with, the integrity of which protected. Any 
unauthorized change of data will be detected. To counter performance overheads induced by 
encryption and signature verification latency, the proposed architecture incorporates the following 
architectural enhancements: parallel encryption and decryption with memory access, parallelizable 
signatures and conditional data validation. Memory overhead due to signatures is reduced by 
protecting a block of data instead of a data transmitted with a single signature and encrypting 
signatures and storing them off-chip. 

The rest of this paper is organized as follows. Section 2 discusses the related work. Section 3 
describes the threat model. Section 4 presents the security architecture in detail. Section 5 shows the 
experimental result and analysis. Section 6 concludes this paper. 

2. Related Work  
The security protection methods of embedded systems have attracted much attention among 
researchers and various techniques have been proposed to solve this problem. The early traditional 
methods are software-based and nowadays most technologies proposed are hardware assisted. 
Hardware assisted technologies are more efficient with a high processing speed and a small resource 
overhead. In this section, the related hardware-based techniques are examined as below. 

Suh and his colleagues [2] propose the artificially expanded genetic information systems 
(AEGIS)secure processor. They introduce physical unclonable functions (PUFs) to generate the 
secrets needed by their architecture. A ground-breaking model for monolithic security is proposed. 
However, their architecture needs extensive operating system and compiler support. Yan et al. [3] 
describe a sign-and-verify architecture using Galois/Counter Mode cryptography. They protect 
dynamic data using split sequence numbers to reduce memory overhead and reduce the probability of 
a sequence number rollover. A tree-like structure is used to protect dynamic data against replay attacks. 
Multiple access to tree nodes results in a large delay. Gelbart [4] presents an architectural support for 
securing application data integrity. Their scheme can protect the application data from physical attacks. 
A method based on Advanced Encryption Standard - Galois/Counter Mode (AES-GCM) to protect the 
confidentiality and integrity of data is proposed by Vaslin et al [5]. In this method, each block of data 
serves as input to the AES-GCM. The generated ciphertext is written to an out-of-chip memory, and 
the resulting tag is stored in the chip. This scheme has advantages in terms of speed and security, but 
the on-chip storage overhead is high. 

In [6], the author presents a hardware/software approach to secure the application data. Their work 
enhances the memory hierarchy to represent the attributes of each datum as security tags, and adds a 
configurable hardware checker that interprets the semantics of the tags and enforces the desired 
security policies. In [7], Hong et al. presents a cost-effective tag generation design (CETD). Unlike 
other existing schemes, where the tag generation logic is fixed and the related high implementation 
cost can hardly be reduced, this design offers flexibility for varied security levels. However, the data 
tag generated in CETD has certain correlation with the data itself, with a high tag collision rate. Liu 
Tao et al. [8] proposes an improved memory data label generation method for embedded processors. 
They present an enhancement which adds randomness to the input data with the bit flip and the non-
linear Galois Field multiplication (GFM) operations, to safeguard the design against the integrity 
attack with any chosen values. 

3. Threat Model 
In this section, we will illustrate three classes of attacks to which computer systems may be subjected 
and the model of attacks on system data considered in this paper. 

Security attacks can be classified into software attacks, which are launched through malicious 
software or by exploiting weaknesses in the software executing on the system, physical attacks, which 
operate via intrusive physical access into a system’s internals, and side-channel attacks, which are 
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based on observation of a system’s implementation properties such as execution time or power 
consumption [9]. 

 
Figure 1. Threat model of system data 

The kind of attacks considered in this paper is the physical attacks, as shown in the Fig. 1. We 
assume that the CPU is trusted, but any external device except for the processor is not trusted, for 
instance, the external memory and the data bus, which could be attacked. When the attacker obtains 
physical access to the embedded equipment, he can interfere with the external memory or the 
communication between CPU and memory to launch attacks as below.  

(1) Data spoofing attacks: The attacker can modify the system data in the external memory with a 
random value or inject a portion of data as shown in the Fig. 2(a). 

(2) Data splicing attacks: A splicing attack involves the attacker intercepting a bus request and 
returning a valid but non-requested block as shown in the Fig. 2(b). 

(3) Data replay attacks: The attacker can record a portion of data. Then he intercepts a bus request 
and returns an old, potentially stale version of the requested block. As shown in the Fig. 2(c). 

 

 
Figure 2. Spoofing attacks, splicing attacks and replay attacks 

4. Security Architecture 
This section describes the proposed hardware-based data protection architecture and the 
implementation and working process of the proposal. The proposed architecture protects the 
confidentiality and integrity of the system data. 
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4.1.  Overview 
Fig. 3 provides the overview of our designed hardware-based technique that can protect the 
confidentiality and integrity of data dynamically at run-time. 

 
Figure 3. Hardware protection mechanism  

In the proposed security mechanism, lightweight hash algorithm(L-Hash) [10] is used to sign and 
verify data stored in external memory with its hash value, protecting the integrity of the system data 
and advanced encryption standard (AES) stream encryption algorithm is used to encrypt and decrypt 
both data and its integrity signature, protecting the confidentiality of them. Then, we consider the size 
of data protection granularity, which is a trade-off between security and system performance overhead. 
In this security mechanism, on-chip data are signed and encrypted when they are evicted out, and the 
data are decrypted and verified after they are fetched from external memory. Data blocks are 
transmitted between external memory and processor when the data cache misses. Consequently, the 
most suitable protected data block size is the cache line size of the lowest level of the data cache or 
some multiple thereof, or the size of the fetch buffer in systems without a cache. Without loss of 
generality, in the rest of this paper we focus on a system with separate data and instruction first level 
caches and no second level cache. We take the cache line size as the size of the protected data block, 
which not only guarantees security, but also simplifies the process of data protection. 

Data cache is located in the on-chip trusted area on which cached content is considered immune to 
attack. In the designed scheme, we add a hardware-based security protection module between the data 
cache and external memory, which in the on-chip trusted region. When the data cache conflicts and 
writes back a data block to the external memory, the data block is attached with a signature calculated 
using lightweight hash algorithm, that records its integrity information. Then the data block and its 
signature are encrypted using stream encryption, and encrypted ciphertext is stored in external 
memory. When the data cache misses and fetches a data block from the external memory, the data 
block and its signature are decrypted first. The hash value of the decrypted data block is calculated 
again and compared with decrypted signature. When a mismatch is detected, the security module will 
send an exception signal to the CPU, which triggers the response mechanism. 

4.2.  Data Integrity  
Integrity attack refers to a class of attacks that affect the normal execution of system programs by 
destroying or tampering with system data and program code. Integrity is violated whenever any 
unauthorized code is executed or unauthorized data is used. Integrity protection mainly depends on 
various authentication algorithms. In this paper, the implementation of the data integrity protection 
architecture is based on the lightweight hash (L-Hash) algorithm, which is used to generate integrity 
signatures and verify the signatures of data blocks stored in external memory.  
 Hash algorithm is a kind of unidirectional compression algorithm, whose mechanism is to 
compress the information of any length into a fixed length output through a certain compression 
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structure, and the output is called hash value. L-hash algorithm improves the traditional hash algorithm 
and makes a trade-off between security, speed, energy consumption and implementation cost. The 
safety boundary of the L-Hash algorithm based on the sponge structure can be given by the following 
formula[11]:  

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒:𝑚𝑖𝑛 �2
𝑛
2 , 2

𝑐
2�             (1) 

𝑆𝑒𝑐𝑜𝑛𝑑 − 𝑝𝑟𝑒𝑖𝑚𝑎𝑔𝑒 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒: 𝑚𝑖𝑛 �2𝑛, 2
𝑐
2�   (2) 

𝑃𝑟𝑒𝑖𝑚𝑎𝑔𝑒 𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒:𝑚𝑖𝑛 �2𝑛, 2𝑐 ,𝑚𝑎𝑥 �2𝑛−𝑟, 2
𝑐
2��  (3) 

Several optional parameters and corresponding complexity security boundaries are given in the table 1. 
Taking our experimental platform as an example, the OR1200 processor used is an open-source soft 
core processor with a 32-bit data bus. Consequently, the version with a packet length of 32 bits is 
adopted, which affects the security of the algorithm in a certain extent but can improve the information 
processing speed. 

Table 1: Security Boundaries with Different Parameters 
n b c r Collision 2nd-preimage Preimage 
80 96 80 16 240 240 264 
96 96 80 16 240 240 280 
96 96 64 32 232 232 264 
128 128 120 8 260 260 296 
128 128 120 8 260 260 2120 

 

Data integrity is ensured by verifying the integrity signature of the data at run time. Different from 
the code which can be determined after compiling and linking, the data is highly dynamic and can be 
modified during the running of the program. For data integrity protection, not only spoofing attacks 
and splicing attacks need to be considered, but also replay attacks should be considered further. To 
prevent these attacks at the same time, the integrity signature of the data is a cryptographic function of 
the following: (a) the actual value of the data, (b) the starting virtual address of the data, (c) a number 
that can mark the order of time. The value of the data is necessary to prevent spoofing attacks and 
partial splicing attacks and replay attacks. Because once the value of the data is tampered with, the 
integrity validation information that contains the data content will change. Using the data’s address 
prevents splicing attacks, since data residing at different addresses will have different signatures. To 
prevent replay attacks on data, a number that can mark the order of time is required to ensure that all 
fetched dynamic data is up-to-date. We call the number a timestamp, which is associated with a 
protected block of data.  

Next, we discuss how to generate the timestamp. To prevent being stolen by a malicious attacker, it 
needs to be generated in the chip and stored in the trusted region within the chip. In the designed 
scheme, we use a counter to generate a count value as the timestamp to mark the time. Whenever the 
data cache writes back a data block to an external memory, the count value increases by one. Both the 
counter and timestamp need to be stored in trusted areas, and the timestamp is mapped to the 
corresponding data block by address. When the data block is read in, the corresponding timestamp is 
retrieved in the timestamp memory according to the address. 

4.3.  Data Confidentiality  
Confidential attacks are also very common attacks against data, aimed at stealing confidential and 
sensitive information from the system. The protection of data confidentiality is usually realized by 
encrypting the data in the untrusted area, which makes the data monitored or stolen by the attacker as 
incomprehensible random code, preventing the disclosure of the confidential information[12]. 
Consequently, the protection of data confidentiality depends on the encryption algorithm. In this paper, 
we adopt AES algorithm, which has the advantages of good security and easy hardware 
implementation.  
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There are two ways to encrypt data using AES algorithm. One is block encryption method, in 
which the content of the data block is used as the input of the encryption algorithm and the output is 
the ciphertext of the data block. The other is stream encryption, that is, the AES algorithm is used as a 
key stream generator to generate a series of pseudo-random numbers, and the data can be encrypted 
and decrypted by performing XOR operation with the sequence. Compared with the two methods, the 
latter has two outstanding advantages.  

First, the stream encryption mechanism adds a small additional delay. To illustrate the process of 
encryption, we take our experimental platform as an example, which is a system on a programmable 
chip (SoPC) based on the OR1200 processor. The OR1200 processor is an open-source soft core 
processor with a 32-bit architecture and 32-bit separate data and address bus. The size of the data 
block transmitted between the data cache and external memory is 128 bits. Fig. 4 compares the delay 
caused by different encryption mechanisms. To complete the data block transmission on the bus, the 
data bus needs to be accessed four times. Block encryption requires the acquisition of a complete 
block of data before encryption and decryption. Compared with the two methods, the stream 
encryption increases the delay by less. In the proposed system, stream encryption method is used, in 
which the delay is mainly due to the calculation time of AES algorithm. 

 
Figure 4. The delay caused by different encryption mechanisms 

In addition, the stream encryption mechanism has relatively low hardware overhead. This is 
illustrated in Fig. 5. The encryption and decryption of stream encryption are implemented using the 
same hardware module as shown in the Fig. 5(a), which includes a key stream generation section and a 
simple XOR operation section. The encryption and decryption of block encryption are implemented by 
two separate modules as shown in the Fig. 5(b). Compared with the two methods, the stream 
encryption has less hardware overhead.  

 

 
Figure 5. Hardware implementation  



CTCE 2018

IOP Conf. Series: Materials Science and Engineering 466 (2018) 012070

IOP Publishing

doi:10.1088/1757-899X/466/1/012070

7

The process of encrypting and decrypting data using AES stream encryption can be expressed as 
the following: 

C = P ⊕ keystr = P ⊕ AESkey (seed)                                              (4) 

P = C ⊕ keystr = C ⊕ AESkey (seed)                                              (5) 

Where C is the ciphertext, P is the plaintext data value, and keystr is the key stream having the 
same bit width as P, which is a pseudorandom number stream generated by using AES algorithm. In 
the formula of generating the key stream, key is the key of the AES algorithm and seed is the input, 
which uniquely corresponds to the plaintext. Operationally, when P is sent off chip, (4) is used; when 
C is read from memory, (5) is used. Calculating AESkey (seed) is carried while the processor is waiting 
for the memory. And XOR operation is performed during the transmission of a data stream. In this 
design, on-chip data are encrypted when they are evicted out due to cache conflicts. The data are 
stored in an encrypted format outside the on-chip trusted region. The decryption is carried out after the 
data are fetched from memory and before they are used by the CPU. 

To ensure the security of stream encryption, it is significant for the key stream to be random and 
unique. If the key stream has a higher repetition rate, this is vulnerable even with encryption, and it 
may potentially permit an attack that doesn't take much effort. Consequently, the input of AES 
algorithm generating the key stream is also required good uniqueness. Next, we discuss how to select 
the key seeds. First of all, we have to make sure that the data at different locations in the external 
memory has different seeds. To that end, we use the physical address of the data block as part of the 
seed to ensure the spatial uniqueness of the key stream. In addition, for a specific address, the data 
written each time is required to correspond to a different seed. Therefore, we require that the seed 
contain time information to ensure the time uniqueness of the key stream. We can use the timestamp 
contained in the integrity signature as part of the seed. 

5. Experimental Results  
In terms of platform building, the embedded processor adopted is OR1200 which is a 32-bit scalar 
RISC with Harvard micro architecture. The cross-compiling tool for OR1200 is the popular and free 
GNU. The systematic simulation toolset is OR1KSim. The SoPC platform is built on a Xilinx FPGA. 

5.1.  Hardware Overhead 
The SoPC platform is verified on a Xilinx virtex5 FPGA. Hardware resource consumption is shown in 
Table 2. 

Table 2. Platform resource consumption 
Slice Logic Utilization Platform used Security module used 

Slice 2449 869 
Slice 7400 1461 

occupied 2864 536 
Block 17 1 
Total 540 18 

5.2.  Performance Penalty 
In this paper, a mechanism for supporting data confidentiality and integrity is designed with little 
latency by performing the requisite cryptographic operations in parallel with memory accesses. The 
AES stream encryption is adopted to encrypt and decrypt data blocks, and the key stream is generated 
while waiting for the memory to answer, which needs 12 clock cycles. After the key stream is 
obtained, the data stream is transmitted, and it is encrypted through a simple XOR operation with the 
key stream during the transmission process. For the integrity of data, hash algorithm is used to sign 
and verify data blocks, and it takes 6 clock cycles to get hash values that contain data block content, 
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address, and time information. The computation of the hash algorithm is parallel to the transmission of 
the data stream, so there is no extra delay. In addition, the encrypted signature is stored in the off-chip 
memory following the data stream, and the signature transmission on the data bus requires 6 clock 
cycles. In conclusion, the performance penalty caused by the security module is mainly due to the 
delay caused by the generation of key stream and the transmission of integrity signature and it is 
relatively low. 

5.3.  Security and Overhead Trade-offs  
The uniqueness of the key seed is very critical to the security of encryption. The timestamp is used to 
ensure the time uniqueness of seeds, so the size of the counter that produces timestamps is a problem 
worth considering. If the counter is too small, the count value will overflow quickly resulting in a high 
repetition rate of timestamp, and the time uniqueness of the key seed cannot be guaranteed well, so 
that the security of data encryption will be reduced. However, if the counter is too large, the storage of 
timestamps will take up too much on-chip storage space. Therefore, the size of the counter should be 
selected according to the application requirements, and there is a balance between security and storage 
overhead. In this paper, an 8-bit counter is used on our experimental platform. Each 128-bit data block 
of the system is attached with an 8-bit timestamp, with a 6.25% on-chip storage overhead. 

6. Conclusions  
This paper presents hardware security extensions suitable for implementation in embedded processors. 
The proposed architecture relies on the lightweight hash algorithm to protect the integrity of the 
system data by integrity signature, and AES stream encryption algorithm is used to protect the 
confidentiality of data dynamically at run-time. Cryptography computations are carried in parallel with 
memory accesses, minimizing the performance penalty. The experimental results show that the 
designed architecture can defend a wide range of common physical attacks, such as spoofing attack, 
splicing attack and replay attack, protecting the confidentiality and integrity of data effectively with 
low performance and hardware overhead. 
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