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Abstract. Gain-phase errors calibration is important for systems using sensor array. In this 
paper, we consider an improved data model, and propose a low-complexity algorithm for 
sensor gain-phase errors estimation using an auxiliary source with known direction. The 
proposed algorithm has good performance in low signal-to-noise ratio (SNR). Moreover, it 
performs independently of phase errors. Computer simulations are presented to show the 
efficacy and performance of the proposed algorithm. 

1. Introduction 
Direction finding is an important task of radar, sonar and communication systems. Many high 
resolution algorithms have been proposed to estimate the direction-of-arrival (DOA), such as 
maximum like (ML) [1], multiple signal classification (MUSIC) [2], rotational invariance techniques 
(ESPRIT) [3]. In these methods, the good performance is obtained on the premise that the array 
manifold is exactly known. However, the performance may be degraded severely due to the sensor 
gain-phase errors. In this paper, we consider an improved data model, which is different from the 
conventional data model. In the conventional data model, the influence of gain-phase errors on 
channel noise is ignored. In the case of low SNR level, it is reasonable. However, in the improved data 
model, the influence of gain-phase errors on channel noise should be considered. In [4], the authors 
propose a calibration algorithm for gain-phase errors based on the improved data model. The method 
only needs some simple matrix operations and no prior information about the direction of auxiliary 
source is required, but it is applicable only to uniform linear array. In [5], a performance analysis of 
MUSIC algorithm in the presence of gain-phase errors based on the improved data model is studied, 
and a quadratic equation for solving the SNR resolution threshold is presented. A joint iteration 
method is proposed for the improved data model to compensate gain-phase errors in [6], but many 
computations and long convergent time are required. In [7], a low-complexity algorithm is proposed 
based on the improved data model, which estimates gain-phase errors by using the first-order 
statistical property of receiving data with an auxiliary source in known direction. Few computations is 
required in the method, however, it is only suitable to the case that SNR is high (SNR >10dB) while 
the improved data model is more suitable to be applied to the case of low SNR. 

Inspired by [7], we propose an algorithm to estimate gain-phase errors based on the improved data 
model using an auxiliary source in known direction. In [7], the gain-phase errors are obtained by using 
first-order statistical property (observation data). However, in our algorithm, we use second-order 
statistical property (covariance matrix of observation data). In this way, the contribution of noise in the 
data covariance matrix is taken into account to extend the performance assessment to low SNR level. 
In addition, the estimation accuracy of the algorithm is not affected by phase errors. 
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Notation: In this paper, superscripts    and    represent the conjugate and conjugate transpose 

operations, respectively. E   stands for mathematical expectation and diag   denotes a diagonal 
matrix. 

2. Data Model 
We consider a planar array composed of M omni-directional antenna elements. Assume that these is 
one far-field auxiliary source at direction  ,   impinging on the array.   and   are the azimuth and 

elevation angle of the auxiliary source, respectively. The array manifold vector  , a  at direction 

 ,   can be expressed as  

    1 2, , , , Ma a a  a    (1) 

In the presence of gain-phsae errors, the gain-phase errors matrix Γ  is introduced to modify the 
array manifold vector as 

    , ,   a Γa   (2) 

Here, Γ  is a M M  diagonal matrix given by 
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  (3) 

where m  and m  for 1,2, ,m M   are the gain errors and phase errors of the m-th sensor. We 

take the first sensor as the reference sensor, thus we have 1 1a  , 1 1   and 1 0  . The conventional 
data model is expressed as 

        ,c t s t t  X Γa n   (4) 

where  tn  is the vector of zero-mean white additive noise, which is uncorrelated with  s t . 
However, in low SNR level, the influence of gain-phase errors on noise can not be ignored. As [4-7], 
the observation data of the improved data model is given by  

         ,i t s t t  X Γ a n   (5) 

The covariance matrix of  i tX  can be written as 

         2 2, ,x i s niE t t          R X X Γa a Γ ΓΓ   (6) 

where 2
s  is the power of calibration signal and 2

n  is the noise power. The problem we focus on is 
to estimate sensor gain-phase errors matrix Γ  when the incident angle and the observation data are 
known. 

3. The Proposed Algorithm 
To make use of the second-order statistical property (covariance matrix of observation data), we write 
(6) as 
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  (7) 

The elements in the main diagonal of xR  are given by 
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   2 2
x s m m m m n m mmm

a a    R Γ Γ Γ Γ   (8) 

Respecting the first sensor is the reference sensor with 1 1a  , 1 1   and 1 0  , we have 

 

 
 

2 2

2 2
1 1 1 1 1 111

2 2 2 2

2 2

2

x s m m m m n m mmm

x s n

s m n m

s n

m

a a

a a

 
 

   
 



  

  

    


    







R

R

  (9) 

Therefore, the gain error of the m-th sensor is obtained as 
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Observe the first column of the covariance matrix in (7), we have 
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Thus, the phase error of the m-th sensor is obtained as 
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The algorithm is quite simple. Unlike the method in [7], the derivational process of the proposed 
algorithm does not require approximation. Therefore, regarding the estimation accuracy, the proposed 
algorithm has an advantage over the EAIDM in [7]. Respecting (7) to (12), we can find the proposed 
algorithm performs independently of phase errors. No matter how large the phase errors are, the 
estimation accuracy does not affected by them. 

In summary, the proposed algorithm consists of the following steps: 
Step1: Obtain the observation data  i tX  and compute the covariance matrix 

    x i iE t tR X X  in (6). 

Step2: Use the elements in the main diagonal of xR  to estimate the gain errors in (10). 
Step3: Use the elements in the first column of xR  to estimate the phase errors in (12). 

4. Simulation Results 
In this section, we present some computer simulations to show the performance of the proposed 
algorithm. Being the same as [7], [8] and [9], we generate the gain-phase errors as 
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  (13) 

where   and   are the standard deviations of gain errors and phase errors, m  and m  are 

independent random variables distributed uniformly over  0.5,0.5 . The noise is a complex Gaussian 
process with zero mean. 

4.1. Performance Comparison with EAIDM in [7] 
In this section, we show the RMSE curves to compare the performance with EAIDM in [7]. We 
consider a uniform circular (UCA) composed of 12 sensor elements with radius   / 4sin /12r   , 

the calibration source is placed at direction  45 ,45  . The standard deviation of gain errors   is 
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5. Conclusion 
In this paper, we present an improved data model in the presence of sensor gain-phase errors. Based 
on this improved data model, we proposed a low-complexity algorithm, which uses the second-order 
statistical property (covariance matrix of observation data) to estimate the gain errors and phase errors. 
The proposed algorithm has good performance in low SNR level and performs independently of phase 
errors. 
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