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Abstract. In this paper, an Accelerometer optimization arrangement method based on 
Structural Damage Identification (SDI) is proposed. Firstly, the method constructs a fitness 
function according to the selection of the optimal measuring point of the displacement mode 
based on SDI, which selects a group of points with the largest displacement. Secondly, the 
efficient intelligent optimization is adopted. The algorithm, the improved particle swarm 
optimization algorithm, searches for the optimal placement position of the sensor. Finally, the 
feasibility and effectiveness of the proposed method for sensor optimal placement and damage 
identification are verified by an example of the wheel frame structure. Simulation and 
experimental results demonstrate the effectiveness of the proposed method. 

1. Introduction 
When a mechanical structure needs to be monitored, people always want to use sensors as few as 
possible to get as much machine information as possible. Finding the best sensor placement can be the 
basis for condition monitoring of the manufacturing machine, which can reduce the number of sensors 
and thus reduce costs. 

Accelerometers play an important role in vibration testing, data acquisition and health monitoring 
of engineering structures. Reasonable sensor arrangement is directly related to the sensor's sensing 
efficiency and the costs. Damage identification is the core of structural health monitoring research. 
The analysis data mainly comes from structural response information obtained by sensors installed in 
various parts of the structure.[1-2]  

Due to the economic and structural conditions and other constraints, the installation of sensors in 
all structural degrees of freedom is impossible. In recent years, extensive research has been conducted 
on the optimal placement of sensors for structural damage identification and many methods have been 
proposed. 

In order to use a limited number of sensors to detect damage information, Cobb[3]et al. proposed a 
sensor placement method based on structural eigenvector sensitivity analysis. Shi[4] chose the large 
degree of freedom that contributes to the rank of the Fisher information matrix as the location of 
sensor. The damage position of the structure is determined by using modal information of limited 
measuring points and the method of multiple damage location assurance criteria. On the basis of Shi's 
work, Zeng Guohua[5] proposed a correction method for the optimal placement of sensors for 
structural damage identification, taking into account the difference in noise level of each measurement 
data. Bruggi[6]et al used topology optimization method to the best placement of the sensor, and 
identified the damage of the flexible plate structure. Moore[7]combined with genetic algorithm and the 
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steepest descent optimization method to optimize the sensor configuration, and through the 
experimental data to find the crack location of aluminum plate. Beygzadeh S[8] et al. proposed 
optimal sensor placement for damage detection based on a geometrical viewpoint. Although the above 
methods have been used to study the optimal placement of sensors for damage identification, some 
achievements have been achieved. However, there are still too many complicated sensor layout 
theories and low optimization efficiency. 

2. Basic Theory of Structural Damage Identification 
From the structural dynamics, we can get that if an n-degree-of-freedom structural system is subjected 
to external load, its kinetic equation is: 

M𝛿(𝑡)̈ + 𝐶𝛿(𝑡)̇ + 𝐾𝛿(𝑡) = 𝑃(𝑡)                                                (1)  

Where: M, C and K are n × n order mass matrix, damping matrix and stiffness matrix; 𝛿(𝑡)̈ , δ(t)̇  
and δ(t) are the n-dimensional acceleration, velocity and displacement column vectors respectively; 
𝑃(𝑡) is the external load vector. 

If you ignore the impact of damping when a small deflection occurs in the stiffness, the 
characteristic equation can be expressed as: 

  (K-λM)Φ = 0                                                                (2) 

Where:λ and Φ respectively represent the eigenvalue of the structure and its mode shape matrix. 
Under normal circumstances, the damage caused only to reduce the stiffness of the structure, while 

the quality of the structure remains unchanged. According to the perturbation theory, the characteristic 
equation of the damaged structure is: 

[(𝐾 − ∆𝐾) − (𝜆 − 𝛥𝜆 )𝑀](𝛷 − 𝛥𝛷) = 0                                          (3) 

Where: ∆𝐾   , 𝛥𝜆  , 𝛥𝛷  represent the small changes in stiffness, eigenvalues and mode shapes 
caused by damage, respectively. 

Ignoring the effects of higher order terms, expand and organize the Eq. (3): 

(K-λM)Φ−(K-λM)ΔΦ− (ΔK − ΔλM)Φ = 0                                   (4) 

Contrast formula (2), formula (4), the first item is the structure of the characteristic equation 
without damage. Right both sides of Eq. (4) by the same time by Φ𝑖

𝑇, were: 

Φ𝑖
𝑇(K − 𝜆𝑖𝑀)ΔΦ +Φ𝑖

𝑇(ΔK − Δλ𝑀)Φ = 0                                      (5) 

Because stiffness and mass matrix are symmetric square matrix, that is 𝐾𝑇 = 𝐾, 𝑀𝑇 = 𝑀, so the 
transpose of Eq. (2) shows that the first term of Eq. (5) is zero. Assuming that the mode shape satisfies 
the normalized condition of mass, Φ𝑖

𝑇MΦ = 1, Eq. (5) can be simplified as:  

Φ𝑖
𝑇Δ𝐾Φ = Δ𝜆                                                                                    (6) 

Eq. (6) expresses the relationship between the change of structural stiffness matrix before and after 
damage and the measured modal parameters of the damaged structure. 

Since both the vibration-based and the finite element model-based damage identification 
techniques require the measurement of vibration modes, the finite element model has the same degree 
of freedom, so Eq. (6) must satisfy the requirement of measuring the complete vibration mode. 

Structural damage causes local changes in stiffness. In the finite element model, the proportional 
damage model can be used to represent the change of the stiffness matrix. That is, ΔK can be 
expressed as the sum of the product of each element stiffness matrix and the damage factor. 
Specifically expressed as: 

Δ𝐾 = ∑ 𝛼𝑗𝐾𝑗   ,     0 ≤ 𝛼𝑗 ≤ 1𝑛𝑒
𝑗=1                                                        (7) 

Where: Kj, αj represent the stiffness matrix of the j-th unit and the corresponding damage 
coefficient; 𝑛𝑒 is the total number of units. The damage coefficient α jis the parameter to be identified 
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defined at the unit level. The size of the value can not only indicate the damage degree of the unit, but 
also directly indicate the damage position of the unit. Therefore, the damage coefficient  α j can be 
used as the structural damage recognition factor to identify the structure damage location and extent. 
When α j = 0, it indicates that the unit is not damaged. When α j = 1, it indicates that the unit has 
been completely damaged. When  α j is between 0 and 1, it indicates that the unit is damaged to a 
certain extent. 

Substituting Eq. (7) into Eq. (6) , Finishing equations can be: 

∑ 𝜑𝑖𝑇𝐾𝑗  𝜑𝑖𝛼𝑗
𝑛𝑒
𝑗=1 = Δ𝜆𝑖                                                                      (8) 

Eq. (8) is the governing equation with unknown damage factor α j. Where i can range from 1 to r, 
where r is the order of the measured mode shapes. 

3. Particle Swarm Optimization(PSO) 
To optimize the placement of sensors, it is necessary to determine a reasonable and can meet the 
design requirements of the optimization guidelines and the selection of simple and efficient 
optimization methods. PSO [10-12] simulates bird flocking Society uses three simple rules to 
manipulate individual particles: (1)fly away from the nearest individual to avoid collisions; (2) fly to 
the target; (3) fly to the center of the population. 

Common PSO algorithm expression is as follows: 

                    (9) 

                                                            (10) 

When , take ; then , take ; 
Where: a is the number of particles that make up the group;  is the dimension of the 

target search space;  and  are non-negative constants;  and  are uniformly distributed random 
numbers subject to [0,1];  is the current position of the first particle;  is the optimal position 

searched by the first particle so far;   for the entire particle group to search the best location;  is 

the current velocity of the first particle;  is the maximum speed limit, non-negative number;   are 
the current evolution algebra respectively;   is inertia weight, usually take  

                                                         (11) 

Particle swarm optimization algorithm can be used to process discrete variables. The improved 
algorithm is often called discrete multi-objective optimization based on the particle swarm 
optimization [13]. 

4. Sensor Optimization Layout Methods 
A good sensor optimization arrangement should make the measurement results most sensitive to 
changes in parameters and provide reliable information on potential damage to the structure. [14] The 
optimal placement of sensors is essentially a special type of traveling salesman problem in which a 
given number of sensors are placed at optimal positions in order to obtain as much structural dynamic 
characteristic information and response data as possible. 

4.1. Optimization of Accelerometers Based on Particle Swarm Optimization 
The problem of selecting the location of a measuring point is essentially an optimization problem that 
satisfies a criterion or goal. Figure 1 shows the structure of the application of PSO in sensor layout 
optimization. First, the machine structure is analysed using finite element analysis, and all possible 
measurement points can be determined based on shape and application. From the results of the above 
steps, all vibration displacement patterns can be calculated. Then, enter all of this data into the PSO to 
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find the best sensor location that can be sent to the design and management centre. Depending on the 
results, the staff can make it is easy to monitor the machine with high precision and correctness. 

4.2. The Fitness Function 
Modal analysis is a very important method of condition monitoring. Equipment failures such as cracks, 
shaft looseness and fatigue are often accompanied by changes in physical parameters such as natural 
frequency, modal damping, vibration mode and frequency response function. Researchers can 
diagnose faults based on these changes. The machine’s vibration is supposed to be an n degree of 
freedom linear time-invariant system which differential function can be expressed by the general 
formula [16]: 

 

Figure 1. PSO acceleration sensor placement process 

𝑀 𝑥(𝑡)̈ + 𝐶 𝑥(𝑡)̇ +  𝐾𝑥(𝑡) =  𝑓 (𝑡)                                                    (12) 

Where: M, C, and K are mechanical system mass, damping, and stiffness matrices, respectively, 
which are n ×  n  matrices. 𝑥(𝑡)̈ , 𝑥(𝑡)̇  and 𝑥(𝑡) are the n-order response vectors of the system 
acceleration, velocity and displacement, respectively. 𝑓 (𝑡) is the excitation force vector. Then obtain 
the frequency displacement response function by Fourier transform and set 𝑥(𝑡) = 𝑥𝑒𝑗𝜔𝑡 to: 

𝑥(𝜔) = 𝐻(𝜔)𝐹(𝜔)                                                                           (13) 
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                                               (14) 

Where Mr, Cr, Kr and ϕ𝑟 represent mass, damping, stiffness and per-order vibration mode vectors 
respectively. Eq. (30) shows the relationship between the transfer function and the modal parameters. 
For a machine, the value of (−𝜔2𝑀𝑟 + 𝑗𝜔𝐶𝑟 + 𝐾𝑟) is always the same because it depends only on the 
frequency and Damping ratio. Therefore, the value of the frequency response function depends on the 
vibration mode vector of the points 𝑖 and 𝑗. 

Let (taking n modes) be a displacement mode, where 𝜙𝑖  is an N-dimensional 
vector, where N is the degree of freedom of the machine structure. Let 𝑚 be the number of sensors (or 
the number of measurement points) mounted on the mechanical structure, and 𝑜 = 𝑁 −𝑚 be the non-
measurement point. According to the previous description, the fitness function can be: 

                                                                          (15) 

Where 𝜙𝑟𝑖  denotes the 𝑟 𝑡ℎ component of the 𝑗 𝑡ℎ  vibration mode, and 𝑟𝜖𝑜  denotes that all 
calculation vectors are non-measurement points. Comparing equation (14) with Eq. (15), the key task 
is to find the minimum of the optimal distribution of the sensor Eq. (15). Therefore, the optimal 
position of the sensor is found by calculating the fitness function. In order to optimize the sensor 
layout, considering the characteristics of wheel frame structure, acceleration sensors are mainly used 
in the process of wheel frame system monitoring. In this paper,  is the fitness function, the fitness 
value is the smaller the better.  

The initial placement of the sensor is shown in Figure 2. The finite element mesh of the CAE 
model of the wheel carrier system is shown in Figure 3.  
 

 

 

 
Figure 2. Sensor Layout The initial 

measurement point selection diagram 
 Figure 3. Wheel carrier system CAE 

model finite element meshing schematic 

5. Application of PSO in Accelerometer Placement Optimization 
To optimize In order to verify the effectiveness of the method proposed in this paper, the grinding 
wheel frame of a large crankshaft grinder was selected for analysis. Select the possible 10 
measurement points for analysis. The 3D solid model of the wheel frame was built using 3D software 
Pro/E, and finite element analysis and modal analysis were performed. The study calculated the total 
10th-order natural frequency and obtained 10 vibrational modal shapes for the wheel frame. 
The analysis and calculation results are shown in Table 1, 2 and 3. Figure 4 is the fitness curve with 
the number of sensors. 
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Figure 4. The fitness value varies with the number of sensors 

 
Table 1. Total modal displacement of measuring point (mm) 

Modal 
order 
Point 

1  2  3  4  5  6  7  8  9  10  

1 0.374556 0.19026 0.156093 0.134211 0.097629 0.42588 0.683802 0.222348 0.093135 0.073689 
2 0.342678 0.202986 0.128226 0.131628 0.092526 0.387387 0.646716 0.207753 0.085008 0.085701 
3 0.368277 0.458829 0.270858 0.224574 0.091455 0.814191 0.640794 0.24213 0.085239 0.071064 
4 0.363993 0.277704 0.174867 0.164031 0.095508 0.543900 0.670635 0.231756 0.089922 0.054957 
5 0.656838 0.087171 0.206115 0.11004 0.099897 0.238791 0.33642 0.393288 0.095214 0.257481 
6 0.051093 0.047166 0.020945 0.028203 0.013073 0.115878 0.075495 0.065499 0.006359 0.066108 
7 0.52857 0.020042 0.181041 0.066465 0.076566 0.219618 0.300468 0.402528 0.190176 0.267792 
8 0.01231 0.003864 0.001453 0.00353 0.004238 0.025662 0.052605 0.020614 0.00129 0.009278 
9 1.25E-09 5.49E-10 5.8E-10 1.6E-10 4.22E-11 4.1E-10 9.03E-10 1.07E-10 5.39E-11 1.87E-10 
10 0.67095 0.127722 0.216993 0.134715 0.112749 0.435477 0.333102 0.51408 0.090867 0.354942 

 
Table 2.  Natural frequency of each step (Hz) 

 Modal order Natural frequency Modal order Natural frequency 
1 138.29 6 388.56 
2 162.25 7 434.63 
3 181.06 8 586.52 
4 233.96 9 627.04 
5 250.56 10 630.72 

 
Table 3.  Sensor Arrangement Results 

Measuring 
points 

Fitness Sensor 
position 

Measuring 
points 

Fitness Sensor position 

1 38.90521 3 6 5.335314 1 2 3 4 5 10 
2 29.95556 3 10 7 0.2581050 1 2 3 4 5 7 10 
3 22.84121 3 4 10 8 1.818260E-002 1 2 3 4 5 6 7 10 
4 16.68459 3 4 5 10 9 1.801762E-017 1 2 3 4 5 6 7 8 10 
5 10.67423 1 3 4 5 10 10 0 1 2 3 4 5 6 7 8 9 10 

 
Taking into account the fitness value and the sensitivity of each measuring point to the signal, it 

can be seen from Figure 4. 8 that the optimal measuring point number is 7, since the effect of adding 
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measuring points is not obvious. Considering the symmetry and economy, The optimal location for 
selecting 6 sensors is{1 2 3 4 5 10} or {1 2 3 4 5 7}. 

6. Experimental Study 
According to the measuring point arrangement of the above research, six acceleration sensors are used 
to monitor the condition of the grinding wheel frame of the large crankshaft grinding machine. The 
experimental data was collected using the INV3060 system of China Orient Institute of Noise & 
Vibration. 

Figure 7 is a signal in which the acceleration sensor at the position 1 is in a normal state, and 
Figure 8 is a signal at which the acceleration sensor at the position 1 is subjected to grinding flutter. In 
summary, the sensor arranged by the sensor arrangement method proposed in the present invention 
can obtain a better recognition effect. 

 

     
Figure 5. The large crankshaft grinding 

machine 
Figure 6. The grinding wheel frame of the large 

crankshaft grinding machine. 
 

 

 

 
Figure 7. Normal state of acceleration 

signal 
 Figure 8. Acceleration signal when grinding 

flutter 

7. Conclusion 
Aiming at the problem of optimal placement of accelerometers, this paper uses the improved particle 
swarm optimization algorithm to solve multi-objective optimization, obtains a better sensor layout 
scheme, and conducts case study on the monitoring of the grinding wheel frame of large crankshaft 
grinding machine, and obtains better monitoring results. 

1. Combined with the damage condition of the mechanical structure, the modal test effect of the 
health monitoring can be maximized by adding a small number of sensors at a reasonable position. 

2. The selection of the optimal measuring point of the displacement mode of the mechanical 
equipment is transformed into a multi-objective optimization problem of finding the position and 
number of a group of points with large displacement. 

3. The multi-objective optimization algorithm adapts to different number of sensors, can calculate 
the relative number of sensors and their arrangement position, and provide good technical support for 
the acceleration sensor arrangement on the large crank wheel frame to meet the needs of long-term 
health monitoring. 
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