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Abstract. Equipment replacement is a fundamental problem in the current industrial Internet of 
Things application and development and has very practical application significance and value. 
This paper takes the service life of equipment as the research object, applies machine learning 
theory, builds the equipment maintenance prediction model based on random forest regression 
on the basis of analysis and comparison, and gives the typical technology implementation and 
verification of the model, which has good adaptability and reference value. 

1. Introduction 
As more and more IoT devices are put into use, equipment maintenance problems also follow, 
especially for devices in bad environment. It is more urgent to do good maintenance for them, so it can 
be predicted that their life cycle will greatly reduce the maintenance cost and thus reduce the loss 
caused by damage. Because the shift in maintenance strategy from so-called post-event control to 
solving problems by analyzing and enabling predictive maintenance undoubtedly shows us a potential 
market. Research shows that the development of the Internet of Things and advanced analysis have 
driven the entire market to adopt a predictive maintenance strategy, resulting in an efficiency increase 
of 25%-30%. According to the report released by IoT Analytics, the compound annual growth rate 
(CAGR) of predictive maintenance during 2016-2022 is 39%; in addition, annual technical 
expenditure will reach $1.096 billion by 2022. 

Inside the industrial equipment, there can be dozens of sensors or other health detection data, and 
the data is organized into a certain format of information, and then evaluated together with 
maintenance records and machine operation history to determine which problems may occur. There 
are many companies offering IoT analytics platforms such as GE's Predix platform and Asset 
Performance Management (APM) suite. It supports the connection of the Internet of Things and the 
machine, and uses the platform's machine learning algorithm, APM standard measurement and 
advanced analysis to analyze the data, so that the maintenance staff can timely find out the possible 
problems of the machine. 

Therefore, the use of machine learning algorithms for processing is an important method to solve a 
large numbers of data analysis, which makes data analysis a more automated process. For example, in 
some industrial applications, the machine automatically recognizes anomalous performance in 
production data and allows the machine to automatically set or reconfigure the machine to correct poor 
production. With the accumulation of machine learning algorithms, this kind of analytical prediction 
will become an increasingly viable way to improve efficiency. Therefore, the analysis and research of 
this model has more realistic significance and value. 



CTCE 2018

IOP Conf. Series: Materials Science and Engineering 466 (2018) 012001

IOP Publishing

doi:10.1088/1757-899X/466/1/012001

2

2. Random Forest Model 
For model selection, one principle is usually followed: if it is a discrete variable prediction, choose a 
classification model; if it is a continuous variable prediction, select the regression model. For example, 
to predict tomorrow's temperature is a regression task. and to predict whether tomorrow will be sunny 
or rainy is a classification task. Obviously, it is reasonable to choose the regression model for life 
prediction here. Linear regression, Poisson regression, decision tree regression, random forest 
regression, neural networks, etc. are used for regression tasks. Linear regression is simple and fast, but 
it’s very demanding for the data sample, it must be linear, and it’s probably a little bit too simple for 
the problem we are studying. Models that also require linear samples are Poisson regression, Bayesian 
linear regression, etc., and these models are not very accurate. At the same time, because the neural 
network has a long set-up time, it has high requirements on the machine configuration, which is not 
suitable for the current situation. 

A random forest is a combined classifier model consisting of decision tree classifier 

sets }1,2,k),{h(x, k =θ , where parameter sets }{ kθ  are independent and identically distributed 
random vector and x is the input vector. When given an input vector, each decision tree has one vote to 
select the optimal classification result. Each decision tree is an unpruned decision tree constructed by a 
classification regression tree (CART) algorithm. Therefore, corresponding to CART, random forests 
are also divided into random classification forests and random regression forests. At present, the 
application of random classification forests is more common, and its final result is the simple majority 
vote of single tree classification results. The final result of random regression forest is the simple 
average of the output of a single tree. The random forest uses the Bootstrap resampling technique to 
repeatedly randomly extract k samples from the original training sample set N to generate a new 
training set sample set, and then generate a k decision tree based on the self-help samples. The essence 
is an improvement of the decision tree algorithm, which combines multiple decision trees together. 
The establishment of each tree depends on an independently extracted sample. Each tree in the forest 
has the same distribution, and the classification error depends on the classification ability of each tree 
and the correlation between them. 

According to the principle and basic idea of random forest, the generation of random forest mainly 
includes the following three steps: 

First, k training sample sets are extracted from the original sample set S by the Bootstrap method. 
In general, the sample size of each training set is consistent with that of S; 

Secondly, k training sets are learned to generate k decision tree models. In the process of decision 
tree generation, it is assumed that there are a total of M input variables, and F variables are randomly 
selected from M variables. Each internal node is divided by the optimal split method on the F 
characteristic variables, and the F value is constant during the formation of random forest model. 

Finally, the results of the k decision trees are combined to form the final result. For the 
classification problem, the combination method is a simple majority voting method; for the regression 
problem, the combination method is a simple averaging method. 

3. Maintenance Prediction Model Design 
This paper chooses a random forest regression model, which performs well on data sets compared to 
other algorithms. The model is capable of handling very high dimensional data without the need for 
feature selection. In addition, it can give important features after training is completed. The 
generalization ability of the model is relatively strong, and the interaction between features can be 
detected during the training process. Scikit-learn provides an implementation of the model, so you 
only need to provide the appropriate parameters to create a model. The model parameters are as 
follows: 

n_estimators: number of submodels; 
criterion: a calculation method used to determine whether a node continues to split; 
max_features: the maximum number of features involved in the judgment when a node is split; 
max_depth: the maximum depth, ignored if the max_leaf_nodes parameter is specified; 
min_samples_split: the minimum number of samples required for splitting; 
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min_samples_leaf: the minimum number of samples of leaf nodes; 
min_weight_fraction_leaf: the weight value of the smallest sample of leaf nodes; 
max_leaf_nodes: the maximum number of leaf nodes; 
bootstrap: whether the bootstrap to extract the sample; 
n_jobs: parallel numbers, more jobs can speed up the construction of the tree; 
warm_start: whether to start hot, if so, the next training will be in the form of an append tree; 
oob_score: whether to calculate the outer bag score; 
random_state: the randomizer object; 
verbose: whether to display the submodel construction log, 0 means no display, 1 means occasional 

output, and more than 1 means each submodel outputs. 
After many tests, the results have not been fitted, and the random forest regression does not need to 

pay too much attention to its branches and leaves and allow it to grow wildly, Therefore, only the 
number of sub-models (n_estimators) and the standard criterion for splitting can be concerned here, 
and verbose can be set if the training progress needs to be observed. 

There are two options for criticion: 
(1) Mean square error "mse": 

 ∑ =
−=

n

i ii yy
n

MSE
1

2' )(1
  (1) 

y' represents the predicted value of the model to the sample, and y represents the true value, and the 
difference between the two is obtained by subtracting them. The square is a way to get a positive value. 
You can also take the positive value by taking the absolute value, which is the average absolute value 
error. 

(2) Average absolute error "mae": 
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The variables have the same meaning as above, but here the influence of some extreme values on 
the overall sample data can be reduced, and these extreme values are often data noise. 

Introduction to the principle of tree growth: The above discussion of the criterion parameter is for 
most usage scenarios. The basis for splitting and tree growth in decision tree nodes will be different, 
but still choose mse as the standard here, as follows: 
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For the data sets D1 and D2 that are divided into two sides of the arbitrary division point s 
corresponding to arbitrary partition feature A, find the minimum mean variance of each set of D1 and 
D2, and the corresponding feature and feature value partition points of the sum of the minimum mean 
variance of D1 and D2. In addition, c1 is the output mean of the samples of the D1 data set, and c2 is 
the output mean of the samples of the D2 data set. 

The predicted value of each regression tree is the mean value of the leaf nodes of the tree, so the 
predicted value of the random forest is the average value of the predicted values of all trees. 

4. Technical Implementation of the Model 

4.1. Model Training 
This can be done by using Python and Scikit-learn, and the model can be serialized into a model file 
by using the sklearn.externals.joblib module: 

from sklearn.ensemble import RandomForestRegressor 
from sklearn.metrics import accuracy_score 
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from sklearn.externals import joblib 
import matplotlib.pyplot as plt 
from sample_split import get_samples 
if __name__ == '__main__': 

x_train, x_test, y_train, y_test = get_samples() 
model = RandomForestRegressor(n_estimators=200, criterion="mse", verbose=2) 
model.fit(x_train, y_train) 
joblib.dump(model, "aircraft_engine_200.m") 

4.2. Model Loading 
Since different models may be loaded differently, you need to write the appropriate load module for 
each model. But what's common is that you need to provide a predict method that can directly pass the 
data for prediction and then return directly to the predicted result. The loading module of this model is 
as follows: 

import pandas as pd 
from sklearn.externals import joblib 
class AircraftEngine200(object): 

def __init__(self): 
self.__model = joblib.load("./aircraft_engine_200.m") 

def predict (self, data): 
result = self. _model.predict(data) 
return result 

if __name__ == '__main__': 
samples = pd.read_csv("./small_samples_500.csv") 

obj = AircraftEngine() 
del samples["id"] 
del samples["cycle"] 
del samples["RUL"] 
print(obj.predict(samples)) 

The loaded random forest regression model is shown in figure 1, where the number of trees is 100. 
As the leaf nodes in the model are more divergent, only part of the graph is captured here. Model 
comparison diagram is the comparison between the model generated by a sample and the optimal 
model, as shown in figure 2, eventually, the optimal values for all models are produced. 

 

 
Figure 1. Random forest regression model diagram. 
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Figure 2. Model comparison diagram. 

5. Test and Result Analysis 
The "equipment life prediction system" runs under the Ubuntu system. The system operating 
environment test results are shown in the following table 1. 
 

Table 1. Equipment life prediction system" run test. 

test environment CPU RAM Startup 
mode 

Number of 
models 

Test Results Success 
probability 

environment 1 1 core 1GB Debug 2 success 100% 
environment 2 1 core 2GB Debug 4 success 80% 
environment 3 1 core 1GB Gunicorn 2 success 100% 

 
Table 2. System unit test. 

Function name Operation Expected results Results 
Load model interface Browser direct access Display system main interface success 
Loading model Open local model Show preview success 
Model upload Click the upload button Start uploading the model success 
Data prediction 
interface 

Click the data forecast 
button 

Display data prediction interface success 

upload data Open local file Load local file and display preview success 
Model viewing 
interface 

Click the model view 
button 

Display model view interface success 

View model Choose a model Display model information success 
View log interface Click to view the log 

button 
Display the view log interface and 
load the background log 

success 

Evaluation record 
interface 

Click the evaluation 
record button 

Display the evaluation record 
interface and load the record 

success 

View record Select a record Draw a chart based on the selected 
record 

success 

Record comparison 
interface 

Click the contrast button Enter record comparison interface success 

Record comparison Select a record The chart will be drawn according to 
another record selected 

success 
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Limited by device RAM, the maximum limit that an expensive 2GB cloud server can boot is four 

models (affected by model size). But if you use gunicorn to start the server, the pressure will be 
smaller, because two threads will be started in debug mode, which means that the number of models 
loaded will be twice as many. 

Unit testing is the most basic part of software dynamic testing, and it is also one of the most 
important parts. The unit testing of this system is shown in Table 2 below. 

Each function test of the system is normal, and the functions expected to be realized are completed. 

6. Conclusion 
This paper combines the actuality of equipment maintenance forecasting work, based on the engine 
life prediction data, and systematically discusses the construction ideas, processes and Python 
implementation ideas based on random forest machine learning model. 
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