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Abstract The paper considers the problems in forming the landslide bodies taking into 

considerations the features of forming Stress Strain State (SSS) and stability of soil structures 

(cut and embankment). The investigation was carried out on the basis of calculation with the 

certified finite element method (FEM) GenIDE32. The analysis of phenomena of curls of the 

displacement vector has been done for the excavation from the uniform soil. It is shown how 

they influence the places of vertical cracks formation and their size and the stability of the top. 

Curls are not observed in the uniform embankment with the same geometrical (hu=du=const, 

1:m=1:1) and other parameters as cut has. The calculation results make it possible to see the 

appearance and evolution of “plasticity“ zones or the  limiting state as  “compression” and 

“expansion” zones. Consistent modeling of cut or embankment allows one to see how the 

landslide body forms including body with vertical cracks. The analysis uses graphs of 

trajectories of SSS variation in the space of invariants of stress tensor σij and relative 

deformations εij in important nods and finite elements located at the foots of constructions, 

where the sliding lines with kst min.  appear. These make it possible to see, on graphs of form 

and volume deformations, where the system is located with the condition, for example, 

kstmin=1,33> [kst]=1,30 from the condition at which the landslide body formed: 

kstmin=1,00±0,02≈[kst]=1,00. 

 

1. Introduction 
How do technogenic landslides originate? According to the idea given in [1], on the potentially 

dangerous landslide slope mode I crack appears at some moment of time t1 (landslide phenomenon I). 

Then, at t2 mode II cracks appear, which bound the future landslide body (landslide phenomenon II).  

Further, at the moment t3 the bias surface occurs that severs the future landslide body from the massive 

(landslide phenomenon III). And at the moment t4, shift of rocks occurs with the formation of the 

breakdown wall and landslide proper (landslide phenomenon IV). 

Prof. Maslov N.N. [2] explained the landslide phenomenon I in the following way: “The initial 

stage of the stability violation is characterized by the fact that on the plateau, behind the top of slope, 

the extension cracks appear”.   
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In this century, the investigation works are under way on numerical methods of attacking problems 

concerning the features of landslide bodies formation in rock masses through study of SSS and the 

stability of systems of “cut – geomedium”, “embankment – geomedium” related to this state. 

 

2. Urgency of the problem 

Engineering methods of stability evaluation, central to which is the theory of the limiting state, do not 

“understand” the difference in SSS of such constructions as cut and embankment. If calculate such 

constructions with the same geometrical parameters (du=hu=const, 1:m=1:1) and values of physico-

mechanical characteristics and evaluate their stability, the result will also be the same  [3, 4]: 

kstmin=1,00. Meanwhile, due to the difference in the technology of constructing cut and embankment, 

the formation of landslide bodies in rock masses of their slopes occurs with their own features. 

These peculiarities must be studied. In the first case, rock mass at first is unloaded and then loaded.  

In the second, it always loaded. The knowledge of peculiarities of SSS variation of those systems will 

show ways of studying more complex natural and technogenic landslide processes, which occur in the 

river valleys, foothills and mountains due to various factors including economic activity of man.  

 

3. Ends and means for problem solving  

The goal of the present study was the investigation of peculiarities in SSS variation of soil masses of 

slopes at the construction of cut (embankment) and landslide phenomena occurring in them. 

Numerical modelling of construction of “cut (embankment) –  geomedium” system was done with 

the certified code GenIDE32 [4], in which the final element method (FEM) was used. In SSS 

calculation, a nonlinear model of soil was employed on the basis of associated law of the plastic flow 

with the Mohr-Coulomb failure criterion for shear strength. 

The general scheme of the problem solution of the element’s SSS for the system is the following: 

1) the determination of the initial SSS of the natural soil mass; 

2) successive modeling layer-by-layer of the construction of a structure; 

3) application of surface loads if needed. 

The program interface makes it possible to show on the computer monitor the fields of the bias 

vector ui in the form of three results of each calculation: “absolute”; from the initial SSS; “among 

stages of changes” of the calculation scheme both on excavation and applied loads. This makes it 

possible to see “rotation circles” [5] or whirls: whirl1 when fields of the bias vector ui «between the 

stages of variation; whirl2 from the initial SSS. This phenomenon requires special investigation. 

 

4. Results 

Further given are the investigation results of SSS for the cut as an example of layer-by-layer numerical 

modelling of its construction. The depth of the cut was on the order of 15,00 m and when the outlines 

of the landslide body were seen: kst min≈1,00±0,02. The horizontal equivalent of the cut slope was 1:1. 

The thickness of excavation layers was equal to 1,10 m. The parameters of soil of a uniform calculated 

area were given equal to (variant №1): γ=0,0207 МN/m
3
, Е=45MPa, ν=0,39, φ=02 grad, с=0,015 

МPa.  

The size of the calculated area was chosen from the condition that boundary conditions on bias 

vector could not influence numerical results of the solution. 

As is known [6], the assessment of the slope stability is made according to the condition 

kst≥[kst],             (1) 

where kst and [kst] are calculated and required values of safety factor, respectively. 

The glide line for which the safety factor is calculated as the track of the glide surface on the 

vertical plane may be arbitrary or cylindrical. 

There are three variants of kst calculation: 

1) On the basis of SSS calculation for a soil construction with a set geometrical size [7]; 

2) The same at modelling of one-time its construction; 

3) The same at modelling of its successive construction according to the standard technology [3]. 
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For example, for cut (d=15,4 м, 1:m=1:1) with designated values of strength parameters and rock 

deformation (the Mohr-Coulomb model) the calculation results for kst min according to [4] are: 1) kst 

min=1,00, 2) kst min=1,00, 3) kst min=0,98. The assessments were made with the use of cylindrical glide 

lines. The safety factor was computed according to the technique of “the limit tangential stress»: kst 

min=τu/τ.  

The calculation results make it possible to see the appearance and evolution of zones of “plasticity” 

or of the limiting state in the form of “compression” and “dilatation”. “Plasticity” zones or the limiting 

state (uniaxial compression with shear and vice versa – cross-hatched finite elements) appeared at the 

slope of the cut during forth stage of excavation. Further, as the cut became deeper, these widened 

upward and to the left inside the cut slope and slightly downward from its current position. After 12
th
 

stage of excavation between tracks of centers of whirls1 and whirls2 (Fig. 1, a) appeared were and 

then developed upward and to the left towards the horizontal surface of the slope “plasticity” zones 

with dilatation (hatched vertically or horizontally and also vertically and horizontally finite elements) 

(Fig.1, b). 

At the same 12
th
 stage, the soil of the cut slope turned into a limiting state in stability (Fig.1, a). All 

glide lines with kst min are virtually in the limiting state zone. At the top, the lines cross the finite 

element (red), in which all major stresses equal zero: σ1=σ3=0.  

 

  
a)                                                              b) 

Figure 1. Field of the bias vectors for the “cut – geomedium” system: a) whirl2 near the slope 

surface, the origination of “plasticity” zones (dilatation) at the 12
th
 stage, kst min≈0,98; b) the appearance 

of the whirl2 at the top of the slope (at the 13
th
 stage, kst min≈0,98). 

 

Signs of the fact that the landslide body formed at modelling cut with a depth of du=15,40 m (14
th
 

stage of excavation) are the following: 

1)Violation of stability condition: kst min≈1,00±0,02 (occurred at 12
th
 excavation stage. Possibly, 

when horizontal cracks formed above “plasticity of compression” zone. (Fig.1, a)). 

2)The appearance of “plasticity of dilatation” zones above “plasticity of compression” zones 

(occurred at 12
th
 excavation stage, (Fig.1, a)). 

3)The appearance of “plasticity of dilatation” zones and whirls2 at the surface of mass (occurred at 

13
th
 excavation stage. (Fig.1, b)). 

          4)The origination of long sites at various graphs: in quadrant     σi – εi (Fig.2, a) and at graphs 

ux – uy (Fig.3, a); 

5)The landslide prism does not influence SSS of the soil mass (values in nods tend to be constant, 

for example, σхх ≈const. (Fig. 3, b)); 

        6)The origination of landslide body outlines at the output on the computer monitor of mean 

relative deformations ε (Fig. 3, а). 
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                                        a)                                                                  b) 

Figure 2. Calculation results (cut – geomedium) – graphs of loading trajectories in space of 

invariants of stress tensor σij (MPa) and relative deformations εij for the final element at the slope foot: 

a) in cut; b) in embankment 

  
                                        a)                                                                  b) 

Figure 3. Dependencies ux – uy (m-m) and σxx – σyy (MPa-MPa) for nodes in cut: a) at the slope; 

b) at the left vertical boundary with the slope foot 

 

During modeling of soil excavation from the cut, the rotation centers of whirls1 and whirls2 moved 

from the left to the right to the surface of the cut slope. In doing so, they always were at some limit or 

above in depth. For this variant for whirls1 that depth was 3,30 m, for whirls2 – 2,20 m (Fig.4, a.) We 

note that the magnitudes of the limiting depth of the rotation centers for whirls2 are comparable with 

the magnitude of the critical depth for the mode I crack calculated according to the familiar formula: 

hcr=h90=(2c/γ)∙tg(45º + φ/2)=2,15 m.  

 

  
                                        a)                                                                  b) 

Figure 4. Calculation results – “plasticity” zones and levels of magnitudes of spherical invariant 

for the relative deformation tensor ε (ε≤0. – red or dark red; ε>0. –green or light green color): a) cut; 

b) embankment  
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For all calculation variants, paths of centers motion are similar, and the magnitudes of depth of 

their location depend as in formula hcr on parameters involved.  

With respect to “plasticity” zones, it can be said that they always appear at some distance from a 

horizontal surface inside the soil mass of the slope immediately above the “plasticity” zones 

(compression) when its stress state is close to the limiting one in stability. We think that in this place 

horizontal cracks and then vertical ones originate, which, for some time, do not appear at the slope 

surface. This phenomenon was observed in all the results of calculations done.  

The appeared “plasticity” zones with dilatations were due to motions, in opposite directions, of 

bottom (load) and top (unload) parts of the landslide body. Possibly, dependencies ux – uy for nodes 

are also indicative of that fact. The nodes are located in zones of the whirl centers, where they have a 

shape of hysteresis loops (Fig.3, a). The distance from the top of the loops to the point where the lines 

cross was around 4 mm. 

It is possible that the bottom part of an appearing landslide body comes off its top part which turns 

into a temporary semiarch console associated with the main soil mass (Fig.1, a). At further soil 

excavation (14
th
 stage: du=15,40 m), the landslide body and mode I cracks appear (the final element 

with a vertical hatch h90FEM=2,20 m). This is readily seen at the graph (Fig.4) with levels of mean 

relative deformations ε. Glide lines with kst min=0,98 pass near the boundary that divides zones with 

ε≤0. и ε>0.  

For comparison, calculations of SSS for the similar “embankment – geomedium” system were 

made. At the embankment height h=15,40 m, the soil of its slopes turned into the limiting state with 

respect to stability: kst min=0,99 <[kst]=1,00. In contrast to the cut, in the embankment mass there were 

not deep whirls, “plasticity of dilatation” zones and the landslide prism was not completely formed. It 

formed later, at a height of 19,80m.  

                                       

5. Conclusions 

Numerical calculations of the “soil construction – geomedium” system made it possible to see the 

origination of the landslide body with vertical cracks. As a first approximation, for the “cut – 

geomedium” system conclusion can be made that the rotation centers of whirls2 related to the 

appearance and evolution of “plasticity” zones (dilatation) and ultimately with the formation of the 

mode I cracks. The magnitude of depth for these cracks were determined by the limiting values of 

depth where centers of whirls2 were located. 

                            

6. References 

[1] Khositashvili G R 2007 Landslide – Dangerous Natural Phenomenon (In Russian)  GeoRisk 12 

33. 

[2] Maslov N N 1977 Soil Mechanics in Construction (Landslides and Fighting Against Them)  (In 

Russian) (Moscow Stroyizdat) p. 313. 

[3] Gorshkov N I 2011 Comparable Assessment of Stress Strain State of Soil Structures (Cut   and 

Embankment) with FEM. (In Russian) Stroit. Mekh. I Raszet Soor. Vol. 5 p. 4-11. 

[4] Gorshkov N and Krasnov M Program GenIDE32 for Solving the Applied Problems of 

Geomechanics in Construction v. Certificate of conformity № RA.RU.АB86.H01026, period of 

validity since 28.06.2017 to 7.06.2020 (www.femsoft.ru). 

[5] Fedorovskii V G 2015 Safety factors Soil mechanics and foundation engineering 52 pp. 49-56. 

[6] Building Codes and Regulations 22.02-2003. Engineering Protection of Territories, Buildings 

and Constructions from Dangerous Geological Processes ( М: State committee of the USSR on 

construction and investment) p. 30. 

[7] Yang H. Huang 1983 Stability Analysis of Earth Slopes (New York:  University of Kentucky. 

Van Nostrand Reinhold Company Inc) p. 240. 

[8] Ukhov S B  1973 Calculation of Constructions and Bases with the Final Element Method (In 

Russian) ( Мoscow:  MISI) p. 118 

  


