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Abstract. The finite element method of calculation of reinforced concrete slabs strengthened 

with composite fabrics based on carbon fibers, implemented in the PRINS program, is 

considered. The method is designed for analyzing the stress-strain state of reinforced concrete 

structures when cracks in concrete and plastic deformations in the reinforcement arise. The 

calculation is carried out in increments, and at each step of loading a variable stiffness matrix is 

used. Its constant part represents the stiffness matrix at the beginning of the loading step, and 

the variable one is calculated taking into account the stress-strain state at the end of the current 

iteration. The variable part of the stiffness matrix, multiplied by the displacement vector found 

at the previous iteration, is transferred to the right side of the system of equations and is 

considered as an additional load. When cracks occur or when plastic strains appear, the stresses 

are corrected in accordance with the specified deformation diagrams. Therefore, at the end of 

the loading step the equilibrium conditions are checked. If necessary, the external and internal 

forces are balanced. When considering plastic deformations in concrete and reinforcement, the 

theory of plastic flow and the Huber-Mises yield criterion, modified taking into account the 

experimental studies of Kupfer et al, are used. An example of the reinforced concrete slab 

analysis with different variants of strengthening by composite and without strengthening is 

given. The results of the calculation are analyzed. The possibility of studying of the stress-

strain state on the entire path of loading of reinforced concrete slabs up to destruction is shown. 

 

1. Introduction 
Modern construction norms and rules adopted in our country and abroad (see, for example, [1,2]) 

prescribe to carry out the calculations of reinforced concrete structures in a nonlinear formulation of 

the problem  taking into account the real properties of concrete and reinforcement. The prerequisites 

for the successful implementation of such calculations were created by the development of computer 

technology, on the one hand, and numerical methods of structural mechanics, the finite element 

method first off all, on the other hand [3,4,5,6]. As a result of such development, nonlinear methods 

for structural analysis were implemented in a number of computer programs, such as NASTRAN [7], 

ANSYS [8],  ABAQUS [9], ADINA[10], DIANA[11] and others. Common to all of these programs is 

the use of the step-by-step methods. The system of nonlinear algebraic equations is solved by the 

Newton-Raphson method in its full or modified form. The equilibrium equations  at the loading step 

are written in the form: 

 
1i i i

j j j jK u P F  (1) 
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where K  tangent stiffness matrix, u nodal displacements vector, P  vector of the externally 

applied nodal loads, F  vector of nodal point forces that are equivalent to the element stresses, j – 

step number, i –iteration number.  

A feature of the Newton-Raphson method of solving of the equation (1) is the calculation and 

factorization of the tangent stiffness matrix on each iteration. In the case of large-order systems such 

calculations can be quite expensive. 

When using the modified Newton method, the stiffness matrix is computed and factorized only 

once at the beginning of the step [3,4]. This simplifies calculations, but requires more iterations to 

achieve the specified accuracy. Therefore, to speed up convergence, different approaches are used, 

based on the correction of the displacement vector at the current iteration. This can be done with the 

help of energy relationships. Such methods are usually called quasi-Newton [12-19]. 

It should be noted, however, that the calculations of physically nonlinear constructions in the above 

mentioned programs are carried out using physical relationships based on certain experiments, and the 

resulting solving equations for the structure as a whole are solved by approximate methods. To 

increase the reliability of results, such calculations should be carried out using several programs. 

Therefore, designers should have in their arsenal several available calculation instruments. In 

connection with this, the development of alternative computational methods and corresponding 

programs remains to this day an urgent task. 

In this paper the finite element method of calculating of reinforced concrete slabs, taking into 

account plastic deformations in the reinforcement and cracking in concrete is considered, the software 

implementation of the technique in the PRINS program is described and the example of the slab 

analysis is provided. 

 

2. Methods  
The analysis of physically nonlinear structures with the help of program PRINS is carried out by the 

finite element method in increments [20] using the equation: 

 ,NLK Δu = ΔP  (2) 

where  NLK  is the total nonlinear stiffness matrix connecting the increments of nodal forces ΔP  and 

displacements Δu , related to the nodes of the finite element model. 

The matrix NLK  varies continuously in the loading interval, therefore, in order to obtain an exact 

solution, it is necessary to go over to integration in (2): 

K

0

u

NL

u

K du     = ΔP,  

(3) 

where 0u and  Ku are the values of displacements at the beginning and at the  end of the loading 

interval, respectively. However, it is practically impossible to calculate by formula (3), since there is 

no analytic expression for NLK , and the upper bound of the integration interval is unknown. 

Calculating the integral by the rule of trapezoids, we obtain 

,0 1

1
K + K Δu = ΔP

2
 

(4) 

where 0K  and 1K  are the stiffness matrices computed at the beginning and at the  end of the loading 

step, respectively. 

We write equation (4) in the form: 

,0K + ΔK Δu = ΔP  (5) 

where 1 0

1
ΔK = K - K

2
. 

Equation (5) is solved by an iterative method: 
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0 i i-1 i-1K Δu = ΔP - ΔK Δu  (6) 

where i is the iteration number. 

When the convergence of the iterative process is reached, the total values of displacements and 

stresses are found by the formulas: 

0 0u = u + Δu;  σ = σ + Δσ . (7) 

Stress increments are found from the formula 

epΔσ = C Δε . (8) 

where 
epC is the elasto-plastic matrix of material characteristics, defined below. This matrix does not 

remain constant at the loading step. Strictly speaking, the stresses must be found by the integration of 

expression (8), i.e. 
Δε

ep

0

Δσ = C Δε . 
 

(9) 

However, when plastic deformations and cracks formation are taken into account, it is necessary to 

analyze the stress state at each loading step and at each iteration  and to correct the stresses using the 

stress-strain  diagrams. This requires the carrying out of the process of equilibration of the structure, 

therefore, the application of the approximate formula (8) is completely justified. 

The stiffness matrix  K  for an individual finite element is given by the formula [3]: 

V

T
K = B CBdV   

where B  is the matrix connecting the deformation components of the element with the components of 

the nodal displacements, C  is the matrix connecting the stress components with the deformation 

components. 

The vector of nodal loads of a finite element is found from the relation: 

V

T
f = N pdV   

where N  is the matrix of the form functions expressing the displacements of the interior points of the 

finite elements through the nodal displacements, p  is the vector composed of the components of the 

distributed load. 

The method for calculating the geometric matrix is well known (see, for example, [3]). When 

constructing a physical matrix the diagrams of deformation of concrete and reinforcement in the form 

shown in figure 1 are used. 

It is assumed that the concrete is deformed linearly in the compressed zone until the yield point Т  

is reached, and in the tension zone - until the cracking pre-condition is reached. The type of the 

diagram in the tension zone is determined by the parameters cr ,  and m , and in dependence on 

these parameters can be different. 

Unloading occurs linearly with the initial modulus of elasticity in the compressed zone, and with 

the module /p д дE  in the tensile zone. 

The stress-strain diagram of reinforcement in the tension and compressed zones are assumed to be 

identical. 

For the two-dimensional state of stress, the graphics in figure 1 are treated as diagrams of the 

stresses intensity versus the deformations intensity. 

In the interval from  Т  to  сm  for a compressed concrete zone, the deformation law 

recommended by the European Commission for Concrete [21] is assumed. It has the form 
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Figure 1. The stress-strain curves for the concrete (a) and reinforcement (b). 

 

where and   are the stresses and strains in the compressed zone of concrete, respectively, 0E - the 

initial modulus of elasticity, 1E  - the secant modulus from the beginning to the peak value of the 

stresses сm , сm  - the deformation corresponding to the peak value of the stress. 

Multilayer finite elements of plates in bending, constructed using the Kirchhoff hypothesis and 

described in detail in [20] are used. 

To obtain the relationship between the increments of stresses and deformations for the compressed 

and compressed - tensile zone, the theory of plastic flow is used. The yield criterion for concrete in a 

compressed zone is adopted in the form proposed in [22]: 
1

2
1 2 2 1 0( , ) 3 ,f I J J I  

(11) 

where 1I is the first invariant of the stress tensor, 2J - the second invariant of the deviator of the 

stresses,   and  are the coefficients taken with allowance for the Kupfer et al. [23] experiments equal 

to  = 0.355 0  and  = 1.355. We note that for  = 0 and  = 1, condition (5) turns into the well-

known Guber-Mises criterion [23]. 

The physical matrix is found from the relation (see, for example, [3], [20], [24]): 

H

T

ep T

a C
C C Ca

a Ca
 

 

where C the matrix of the coefficients of the generalized Hooke's law for a plane stress state, a the 

flow vector, H the tangent modulus of the stress intensity- increment of the plastic deformations  

intensity curve. 

The flow vector is found by differentiating of the flow function along the stress components, i.e. 
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In the algorithm implemented in the PRINS program, the curve ( )  is reconstructed by points to 

the diagram ( )р
, by which the parameter H is determined. The process of rebuilding is illustrated 

in figure 2. The same diagram also defines the hardening rule. 

 
Figure 2. The construction of stress-plastic strain curve. 

  

The relationship between stresses and strains in the tension zone is linear before the occurrence of a 

crack. The moment of occurrence of the crack is fixed by the main stresses. When a crack occurs, the 

modulus of elasticity in the direction perpendicular to the crack is assumed to be zero, and the shear 

moduli in the direction parallel to the crack are corrected in accordance with the recommendations 

given in [22]. The recommendations used take into account the aggregate interaction in the crack zone, 

the influence of longitudinal reinforcement and other factors affecting on the operation of the cracked 

concrete for shear. The normal stresses in the direction normal to the  crack direction decrease 

abruptly to a value determined from the diagram in figure 1,a for the tension zone. 

Physical equations in the event of a crack are formed first in the main axes, and then recalculated to 

the global axes. 

The physical equations for the reinforcement and for the carbon fabric with unidirectional fibers are 

taken on the basis of the Prandtl diagram according to the procedure described in [20]. 

The use of linearized equations at the step of loading leads to a violation of the equilibrium 

conditions. Therefore, at the end of each loading step, the vector of nodal forces statically equivalent 

to the total values of internal stresses is calculated, the residual vector is found as the difference 

between the total vector of the external load and the static equivalent of internal stresses and the 

solution is corrected taking into account this discrepancy in accordance with equation (1). Static 

equilibration may require several iterations.  

 

3. Results.  

To illustrate the possibilities of the proposed methodology, a fragment of the reinforced concrete wall 

of one of the structures of the nuclear power plant in which cracks were found and which required to 

be strengthened was considered. Strengthening is supposed to be performed using a fabric based on 

carbon fibers. To convince ourselves of the reliability of the results obtained, in this work the fragment 

of the wall in the form of a strip that was strongly elongated in one direction and hingedly supported 

along short sides (figure 3) was calculated. For comparison, calculation of a plate without 

amplification by a composite was also performed. 
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Figure 3. Fragment of reinforced concrete slab reinforced with composite fabric. 

 

The finite element calculation scheme of the plate is shown in figure 4. A non-uniform grid of 

finite elements with condensation to the middle of the span was used. The grid contains three groups 

of elements 1, 2 and 3. The central group 3 consists of one line of elements. 

 
Figure 4. The finite element calculation scheme of the plate.  

 

The partitioning of the slab into layers by thickness is shown in figure 5. Layers 1, 12 and 29 are of 

zero thickness. Layer 12 is basic, and layers 1 and 29 are fictitious. Fictitious layers are introduced to 

enable the output of the stresses on the lower and upper surfaces in the postprocessor. The thicknesses 

and materials of the layers are given in Table 1. 

 

      Table 1. Layer characteristics. 

Layer number Thickness, sm Materials 

2-11 7 Concrete 

13-22 6.25 Concrete 

23 0.21 Steel 

24-25 3.5 Concrete 

26-29 0.1 Composite fabric 

 

 

The following materials were used: concrete of B20 class, reinforcement of A400 class and 

composite fabric with unidirectional fibers. The stress-strain diagram for compressed concrete under 

the uniaxial stressed state is shown in figure 6. The following characteristics were taken for the fabric: 

modulus of elasticity 76,3 10  KPa,КЕ  ultimate strength 57 10  КПаКR , residual 

deformation 2 %т . 

q

q

Р 

11,2 

м 1 m 

1,4 m 

Concrete 
Steel 

reinforcement 

Carbon fiber composite 
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Figure 5. The partitioning of the slab into layers.  

 

 
Figure 6. Stress-strain diagram for a compressed concrete zone under the uniaxial stress state. 

 

The plate was loaded with a uniformly distributed load of intensity 100 KPaq  . The load factors 

are given in Table 2. 

 

Table 2. Load distribution by steps. 

Step 

numbers 

1-16 17-32 33-40 41 and 

onwards 

Load factors 0.1 0.05 0.025 0.01 

 

Figures 7 and 8 show the equilibrium state curves for a plate without and with composite fabric, 

correspondingly. 

Figures 9 and 10 show the values of the limiting moments for two variants of calculation. The 

limiting state for a plate without reinforcement by composite fabric was reached at a load 53 кПаq , 

and for a reinforced plate – at 114 кПаq . The theoretical value of the bending moments for such 

loads is 831 kNm / m and 1788 kNm / m, respectively. 

 

Layers № 2-11 

Layer № 12 

Layers № 13-22 

Layer № 23 

Layers № 24-25 

Layers № 26-28 
Layer № 29 

Layer № 1 

0,7 m 

0,7 m 
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               Figure 7. Equilibrium curve  for the           Figure 8. Equilibrium curve  for the plate 

               plate without composite fabric.                   with composite fabric. 

 

 

 
 Figure 9. Limit bending moments for a plate without strengthening 

 

 
Figure 10. Limit bending moments for a plate with strengthening. 

 

 

The ultimate values of the moments found by the PRINS program were 830 kNm / m and 1790 

kNm / m, which is practically the same as the theoretical value. 

With the adopted plate strengthening, the ultimate value of the bending moment increased by 

116% compared with the original version. 

Figure 11 shows the penetration depth of a crack for a plate reinforced with a composite in a state 

prior to fracture. 
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Figure 11. The depth of a crack for a plate reinforced with a composite. 

 

When the number of composite layers increased twofold, the ultimate load reached into the value q 

= 221 KPa, i.e. increased by 93.8% compared with the original variant.  

As a result of the calculation, the forces and stresses in the composite fabric were also determined, 

the processes of crack formation in concrete and the plastic deformation of the reinforcement, etc. 

were investigated. The size of the article does not allow us to bring the obtained results in full. 

 

 

Conclusions 

The investigations carried out in the present study have shown that the method of physically 

nonlinear calculation realized in the PRINS program gives the opportunity to analyze in detail the 

processes of deformation of reinforced concrete slabs with both traditional reinforcement and 

reinforcement with composite fabrics. Strict observance of the equilibrium conditions for the complex 

nature of the stressed state, noted in various ways of solving problems, attests to the reliability of the 

results obtained. The PRINS program is accessible to a wide range of specialists and can be useful in 

the calculation and design of reinforced concrete slabs. 
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