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Abstract. Article shows general principles of elastic plastic continuum mechanics, solid body
dynamics  and time integration  methods.  The methods for  finite  element  modeling of  steel
structure details with high strength bolts and their computation using time domain integration
under cyclic loading are considered with due regard to various types of nonlinearities  and
strain rate effects. Comparison of nonlinear static and nonlinear dynamic dynamics methods
that  implement  explicit  and  implicit  time  integration  methods  of  dynamic  equilibrium
equations is made. 

1. Introduction
When designing, constructing and carrying out verification calculations, in some cases, it becomes 
necessary to perform the calculation of a detailed model of steel structural detail for cyclic and 
vibration effects.

Calculation of flange connections with high-strength bolts is of great interest. The stress diagram in
detail can be alternating or of the same sign. In flange connections with high-strength bolts that have 
an alternating stress diagram, for correct modeling, it is necessary to take into account bolt tension, 
contact conditions between flanges, interaction of bolt heads with the flange surface, as well as the 
material dynamic hardening, depending on strain rate.

Consider the cornice frame node (Figure 1), main parameters of which were selected in [1]. Let us 
investigate this detail's operation using the LS-Dyna computational complex, in which nonlinear static 
and nonlinear dynamic calculation methods are realized.

Figure 1. The scheme for applying forces and the stress diagram in the flange.



International Multi-Conference on Industrial Engineering and Modern technologies

IOP Conf. Series: Materials Science and Engineering 463 (2018) 022102

IOP Publishing

doi:10.1088/1757-899X/463/2/022102

2

The flanges were modeled by the second order volume pyramidal finite elements with rotational 
degrees of freedom in the nodes. Rack's shelves and walls and frame's crossbar, forming the detail – 
by the shell's spatial finite elements. The bolt heads were modeled by volume elements. The flange 
thickness was adopted to be 30 mm [1].

Figure 2. The model of the cornice detail 
(together with the part of the crossbar)

Figure 3. Model of bolts, detail's wall and 
booms.

The tension of bolts was carried out using the selected temperature values. Between the flanges, a 
one-way frictional contact was established using the penalty function algorithm. The contact points of 
bolts and outer surfaces of flanges were modeled by rigid nodal bodies.

Figure 4. A scheme for applying a cyclic load to the detail.

Before applying a cyclic load, the thermal load was applied to the bolt bodies to set the bolts 
tension. Load was applied in two stages: during the first stage – increasing from zero to the final value,
and during the second stage – according to the harmonic law. Point of load application and direction is
shown in Figure 5. The cyclic loading graph is shown in Figure 4. The design load is applied to the 
structure after setting the tension of bolts.

Figure 5. Graph of load variance over time. The ordinate shows the values of load multiplier
n to its target value.
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Let us consider three methods of calculation: nonlinear static, nonlinear dynamic (implicit scheme),
nonlinear dynamic (explicit scheme). At the same time, physical, geometric, and constructive 
nonlinearities were taken into account. 

2. Method for solving nonlinear static problems
In the LS-Dyna computational complex, the Newton method and its derivatives are implemented for 
solving nonlinear static problems. The required vector of nodal displacements from the system of 
motion equation un+1 is found at the next time step from the condition:  
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The displacement vector is calculated in the next step:
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The iterative process consists in computing the vector Q:
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where the index i denotes the iteration number, i<j, the parameter s0 takes a value from 0 to 1. After

each iteration, the convergence is checked, which is considered achieved when the following 
conditions are met:
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If the convergence conditions are not satisfied, then the desired displacement vector
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1  is updated and the iteration is repeated. If the discrepancy is observed within a 

given number of iterations, then the stiffness matrix tK  is recalculated. If a discrepancy is observed 
within a given number of stiffness matrix reformation, the calculation is interrupted.

3. The method for solving nonlinear dynamic problems using implicit schemes of motion 
equation integration.
To solve dynamic problems by a direct method, the Newmark method is applied implementing an 
implicit scheme of time integration:

a
tttt fuKuCuM   ,

where M is the diagonal mass matrix;
C is the dissipation matrix; 
K is the stiffness matrix;
f is the vector of external loads;
u is the vector of nodal displacements.
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The classical Newmark method is based on the decomposition of displacements  and 

velocities  in power series by  in the point vicinity . To calculate the velocities and 

accelerations in the next step by time , we obtain the following expressions:

,

Substituting these expressions into the motion equations, we obtain the basic system of equations 

for calculating the vector :

,

where:

+

In the expressions, there are parameters of integration  and . 

The solution is unconditionally stable when , 

The following parameter values are accepted , 

If the problem is linear, then the matrix A containing the initial stiffness matrix K should be 
inverted only once. Otherwise, it is required to perform the procedure for checking the convergence at 
each step and, if necessary, to reduce the time step or to transform the stiffness matrix.

4. The method for solving nonlinear dynamic problems using explicit schemes of motion 
equation integration.
To solve nonlinear dynamic problems, the method of central differences is applied in the calculation, 
which implements an explicit scheme of motion equation integration. To determine the displacement, 
an expression with time lag is used: 

a
tttt fuKuCuM   ,

where M is the mass matrix;
C is the dissipation matrix; 
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K is the stiffness matrix;
f is the vector of external loads;
u is the vector of nodal displacements.
The peculiarity of explicit methods is that nodal accelerations and velocities are included in the 

calculation as unknowns (in the number of nodal degrees of freedom) and are calculated directly, and 
not by numerical differentiation of displacements. 

Explicit methods use recurrence relations that express the displacements, velocities, and 
accelerations at a given step through their values in the previous steps. 

Acceleration vector: 

 1 intext
t t t

 a M f f ,

where ext
tf  is the vector of applied external and volume forces; 

int
tf  is the vector of internal forces. 

In the particular case: 
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where B is the deformation-displacement matrix;
– σ is the stress vector; 

– cont
tf  is the vector of contact forces 

The velocity and displacement vectors in the corresponding time step are defined as follows: 

/2 /2t t t t t t tt    u u v

where the velocity vector /2 /2t t t t n tt    v v a  is calculated at an intermediate timepoint

tt  /2:  1/2 10,5n n nt t t     .

In the case of using a diagonal mass matrix, it is possible to calculate the inverse matrix, thereby 
simplifying the calculation and decreasing the time of one iteration. This shows that explicit methods 
are not connected with the solution of systems of algebraic equations. The most laborious operation is 

the calculation of the internal force vector int
tf , which takes into account all types of nonlinearities. 

5. Allowance for strain rate effects
To account for the kinematic hardening characteristic of metals, the Cooper-Simonds model was used. 
In this case, an elastoplastic model of deformation is used. The dynamic yield point without taking 
into account the temperature dependence was calculated from the expression:

where  is the static yield point;

 is the deformation rate;

C and P are parameters describing the nature of dynamic hardening.
The material parameters used in the problem solution are given in Table 1.

Table 1 Material Characteristics.

Ry (MPa) C P
C 245 (column and crossbar) 240 80 4

C345 (flanges) 320 80 4
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The following is a comparative analysis of the results of the study.
In the upper part of the detail, in the zone of tension, one can observe the gap between the flanges

with an increased scale of displacements. As can be seen from Figures 6 and 7and graphs (Fig. 8),
there is a difference in the value of gap opening when solving a problem by using explicit and implicit
schemes.

Figure 6. The picture of gap between the 
flanges when solving with implicit schemes 
(scale is increased)

Figure 7. The picture of gap between the 
flanges when solving with explicit schemes
(scale is increased)

Figure 8. Graphs of the gap value h when calculated using different methods

The most loaded detail area is the joint of the wall and the lower compressed crossbar flange, in 
which plastic deformations develop (Figure 9). Figure 10 shows the graphs of the nonlinear 
deformations development.

Figure 9. Intensity isofields of plastic deformations epl
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Figure 10. Comparison of the intensity development graphs of plastic deformations

When accounting for the strain rate effects, as well as inertial forces and viscous damping, the
magnitude of plastic deformations occurring in the elements is  several  times lower.  The stepwise
increase and asymptotic deformation approximation to a certain value are also clearly noticeable when
solving the problem in a dynamic formulation.

Figure 11. Comparison of the material state diagrams in the joint of the wall and the lower
compressed crossbar boom

Figure  11  shows  the  material  state  diagrams,  on  which  the  effect  of  dynamic  hardening  and
dynamic yield point is clearly visible.

When solving the problem in a dynamic formulation by the Newmark method, plastic deformations
in the flange are not observed.

The results of the analysis show that the solutions obtained using static and dynamic methods of
calculation differ. It should be noted that the use of explicit methods for motion equation integration

allows to obtain stable solutions at large deformations and displacements, which allows to investigate
the failure behavior and to determine the actual load-bearing capacity of the detail elements. In this
case, depletion of the unit's bearing capacity occurs as a result of destruction of the joint zone of the

compressed boom and the column wall when load increment goes above the design values.

Figure 12. Intensity isofields of plastic 
deformations in the flange when solving by 
using the explicit method 

Figure 13. Intensity isofields of plastic 
deformations in the flange when solving 
the static problem 
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Figure 14. The intensity of plastic deformations epl (the detail destruction pattern)

6. Conclusions:
 The method of modeling the steel structure details, in particular, flange joints, is developed in the

article. An approach is considered in which the contact surfaces of nodes, in particular flanges, are
modeled by volume elements, and the detail elements that are not subject to contact – by using the
spatial elements of the finite shell elements.

 The problem was solved in nonlinear static and dynamic formulations, which allows to calculate
structure details under dynamic effects (seismic [2-8], wind, shock, etc.) with due regard to the
development of nonlinear deformations. The solutions of nonlinear static and dynamic problems
have been compared.

 The proposed method allows to simulate the steel structure details with the necessary degree of
detailization. 

 When calculating dynamic loads of junctions of steel elements undergoing large deformations and
displacements, it is expedient to use implicit schemes of time integration. 

 With the use of explicit schemes, it is possible to investigate the failure behavior and determine real
assurance coefficients of detail bearing capacity. At the same time, elements with a sufficiently
small side or edge size should be used to model structure detail, it is required to choose a very
small  integration step in time to obtain a stable solution in accordance with the Courant-Levy
criterion. 

 When the strain rate hardening is taken into account, the yield point depends on the strain rate and
is somewhat higher than the static one. Accounting for inertial forces, viscous damping, as well as
strain rate hardening reduces the conservatism of the solution obtained. 

7. References:
[1] "On  the  problem  of  calculating  the  flange  joints  for  strength  under  an  alternating  stress

diagram". "Promyshlennoe i grazhdanskoe stroitelstvo", 2009/2.
[2] Investigation  of  a  large-span structure  for  reliability  under  accidental  seismic  actions.  V.L.

Mondrus, O.V. Mkrtychev, A.E. Mkrtychev. (MGSU Harbinger, 2012/5.)
[3] A.P.  Falaleev 2012  Modeling of  plastic  deformations of  two-phase steels  of  body elements.

(UDK 629.113.011, 2012.)
[4]  I.N. Borodin 1, A.E. Mayer 2, Yu.V. Petrov 1,3, A.A. Gruzdkov  2014 Maximum yield point

under quasistatic and high-speed plastic deformation of metals. Solid state physics, vol. 56, no.
12.

[5] J. Klemenc 2016  Estimating the Strain-Rate-Dependent Parameters of the Cowper-Symonds
and  Johnson-Cook  Material  Models  using  Taguchi  Arrays.  Andrej  Škrlec.  University  of
Ljubljana, Faculty of Mechanical Engineering, Slovenia. 

[6]  D. R.Abashev  2016 Development of the elastoplasic deformation model, fatigue criteria and
methods for identifying the material parameters of strucutral alloys. Korolev.

[7] Compressive  Behavior  of  AISI-416 Stainless  Steel  at  Different  Rates  of  Loading.  Ajay  K.



International Multi-Conference on Industrial Engineering and Modern technologies

IOP Conf. Series: Materials Science and Engineering 463 (2018) 022102

IOP Publishing

doi:10.1088/1757-899X/463/2/022102

9

Behera, Nilamber K. Singh, and Maloy K. Singha. Ajay K. Behera, Nilamber K. Singh, and
Maloy K. Singha

[8]     D B Solovev 2015 Instrument current transducers with Rogowski coils in protective relaying
applications International Journal of Electrical Power and Energy Systems vol. 73 pp. 107-113.
[Online]. Available: http://dx.doi.org/10.1016/j.ijepes.2015.04.011.

Acknowledgements
This  study  was  performed  with  the  support  of  the  RF  Ministry  of  Education  and  Science,
grant №7.1524.2017/Project Part.


