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Abstract. The processing maps (i.e. power dissipation maps superimposed over instability 

maps) can be used as a very convenient tool in case of an optimizing of hot forming processes. 

In this research, processing maps of C45 medium-carbon steel were assembled on the basis of 

an experimental flow stress dataset. This dataset was acquired via series of uniaxial hot 

compression tests in the temperature range of 1173 K – 1553 K and the strain rate range of 

0.1 s
−1

 – 100 s
−1

. In addition, a predicted flow stress dataset was created with use of an artificial 

neural network approach – it allowed extending of the experimental dataset with additional 

temperature levels. The experimentally compiled processing maps have been subsequently 

enhanced by this additional dataset to encourage the overall information capability. The results 

have showed that the predicted dataset was useful to reveal additional instability regions in the 

experimentally assembled processing maps. 

1 Introduction 

In recent years, it has been showed that so-called processing maps are a very useful tool for an 

optimizing of hot forming processes. These maps simply represent the areas of temperature, strain rate 

and strain which are appropriate to use in a forming process. They, of course, also denote the areas at 

which the forming process becomes to be precarious [1, 2]. The processing maps are compiled by 

superimposing of power dissipation maps over instability maps. These maps are usually assembled by 

means of experimental flow stress data which are acquired by e.g. uniaxial hot compression or torsion 

tests. These tests are performed at given combinations of temperatures and strain rates – covering a 

presumed range of concrete forming process. However, the limited amount of the experimental flow 

stress data can lead to an inferior accuracy of the assembled processing maps. Nevertheless, this issue 

can be overcome by utilizing of a predicted flow stress dataset [3]. Flow stress prediction is usually 

performed by so-called flow stress models. These models contain different parameters (auxiliary 

variables), e.g. peak point coordinates, hardening and softening exponents. These parameters are 

dependent on the thermomechanical conditions (i.e. temperature, strain rate), so they need to be related 

to these thermomechanical circumstances [4]. In this work, in the first place, power dissipation and 

instability maps of the C45 medium-carbon steel have been compiled on the basis of an experimental 

flow stress dataset. These maps were then enhanced by a predicted flow stress dataset (assembled with 

use of an artificial neural network approach). The aim of this research is to determine the influence of 

the additional flow stress dataset on completeness of the assembled processing maps. 
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2 Experimental flow stress dataset 

Experimental flow stress dataset of the C45 medium-carbon steel was acquired by means of series of 

uniaxial hot compression tests. The entire experimental procedure was in detail described previously 

in [5]. The tests were performed at the deformation temperatures (T) of 1553 K, 1473 K, 1373 K, 

1273 K, 1173 K and the strain rates (𝜀̇) of 0.1 s
−1

, 1 s
−1

, 10 s
−1

, 100 s
−1

, upon the true strain (ε) up to 

1.0. Afterward, twenty flow curves (i.e. dependence of true flow stress on true strain at given 

thermomechanical conditions) were assembled on the basis of this experimental dataset. 

3 Predicted flow stress dataset 

3.1 Hot flow stress models 

The experimentally compiled flow curves were described via known flow stress models. Cingara and 

McQueen’s model [6] was used to describe these curves in the strain range of 0 ≤ ε ≤ εp (i.e. up to the 

peak point) – see equation (1). A modified version of this model [7] was then applied to describe the 

curves in the strain range of εp ≤ ε (i.e. beyond the peak point) – see equation (2): 

 𝜎 = 𝜎𝑝 ⋅ [
𝜀

𝜀𝑝
⋅ exp (1 −

𝜀

𝜀𝑝
)]

𝑐

 (1) 

 𝜎 = 𝜎𝑠𝑠 + (𝜎𝑝 − 𝜎𝑠𝑠) ⋅ [
𝜀

𝜀𝑝
⋅ exp (1 −

𝜀

𝜀𝑝
)]

𝑠

 (2) 

In the equations (1) and (2), ε (-) is true strain and σ (MPa) is corresponding flow stress. The subscript 

p indicates the coordinates of maximum flow stress level (so-called peak point) and subscript ss 

corresponds to the initiation of steady-state flow. The variables c (-) and s (-) represent the work-

hardening exponent and softening exponent, respectively [6, 7]. 

3.2 Description of the flow stress models parameters via an artificial neural network approach 

The flow stress models parameters (i.e. εp, σp, σss, c and s) are highly dependent on the temperature and 

strain rate level – so they need to be related to these thermomechanical circumstances before use in the 

models (1) and (2) [6, 7]. 

As the very first step, the experimental values 

of these parameters have to be obtained. The 

values of εp, σp and σss, can be easily deducted at 

each combination of temperature and strain rate 

from the experimentally compiled flow curves. 

The experimental values of work-hardening 

exponent, c, can be obtained via regression 

analysis of the logarithmic form of equation (1), 

i.e. ln (σ / σp) vs. ln (ε / εp) + 1 − ε / εp. Similarly, 

it is possible to achieve the values of work-

softening exponent, s, from the logarithmic form 

of equation (2), i.e. ln [(σ − σss) / (σp − σss)] vs. ln 

(ε / εp) + 1 − ε / εp [6, 7]. 

As the second step, an artificial neural network 

approach was utilized to mathematically describe 

the obtained experimental values of the above 

mentioned parameters. A Multi-Layer Feed-

Forward Artificial Neural Network (ANN) with 

the Back-Propagation (BP) learning algorithm is 

the most used type of ANN in case of the material 

modeling [3]. This type of ANN was used to 

create five neural networks – one network for 

each examined parameter. Architecture of the 

generated networks was relatively simple. Each 

network connects the input variables (temperature 

and strain rate) with the output variable (one of 

the examined parameters) via set of artificial 

neurons arranged in three layers, see figure 1. 

 

 

Figure 1. Schematic illustration of the used 

artificial neural network architecture. 
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The neurons inside of the neural network are connected via synaptic weights – wij (connecting input 

and hidden layer) and wjk (connecting hidden and output layer). Each neuron of the hidden and output 

layer is at the same time connected with a unique bias value (bj, bk). This weights and biases must be 

then properly set to get the correct response of the network (provided by a network training process) 

[3]. Detailed specifications of the architecture of the created networks are presented in table 1. 

Appropriate number of neurons in the hidden layer of given network is clearly shown in table 2. 

Comparison of the experimental and predicted flow curves can be seen in figure 2. 

 

Table 1. Architecture of the assembled artificial neural networks. 

Network architecture parameter Settings 

Network type Multi-Layer 

Propagation of function signal Feed-Forward 

Learning (training) type With supervisor 

Learning (training) algorithm Back-Propagation of error signal (BP) 

Performance function Mean Square Error (MSE) 

Minimization algorithm of performance function Levenberg-Marquardt (LM) 

Hidden layer transfer function Hyperbolic tangent sigmoid (tansig) 

Output layer transfer function Linear (purelin) 

 

Table 2. Appropriate number of neurons in the hidden layer of given network. 

Network intended for the parameter εp σp σss c s 

Ideal hidden layer neuron number 5 3 3 8 6 

 

  

  

Figure 2. Experimental flow curves (squares) and predicted flow curves (lines) of the steel C45. 

 

It can be seen, the flow tress level of the examined medium-carbon steel is highly dependent on 

temperature and strain rate – flow stress decreases significantly with an increase of temperature and 
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decrease of strain rate. The course of the flow stress is also highly influenced by a combination of the 

thermomechanical parameters – see e.g. observation of peak point or steady-state flow in dependence 

on temperature and strain rate level. It can be noted, the observed flow stress behavior was possible 

sufficiently described by means of the above mentioned models (1) and (2) in combination with the 

ANN approach. 

4 Processing maps 

In this investigation, processing maps of the examined medium-carbon steel were assembled on the 

basis of so-called Dynamic Material Model (DMM) [8 – 10]. According to the DMM, the material 

passing through thermoplastic deformation can be considered as a power dissipater [11]. The 

instantaneous power per unit volume, P (J), which is dissipated by the formed material consist of two 

complementary parts – G (J) and J (J). The first one is the power dissipated as a consequence of 

temperature increase with respect to plastic deformation. The second one is the power consumed by 

metallurgical processes, e.g. dynamic recovery (DRV) and recrystallization (DRX) or defect formation 

[1, 2, 12]. The power dissipation can be quantified on the basis of so-called efficiency of power 

dissipation, η (-) [8]: 

 𝜂 =
2⋅𝑚

𝑚+1
 (3) 

In equation (3), m (-) is the strain rate sensitivity index which determines the correlation between the 

G content and J co-content – it can be expressed as [1]: 

 𝑚 =
𝑑𝐽

𝑑𝐺
=

𝜀̇𝑑𝜎

𝜎𝑑𝜀̇
=

𝑑 ln 𝜎

𝑑 ln 𝜀̇
 (4) 

In equation (4), σ (MPa) is the instantaneous flow stress at given strain and temperature level, and 𝜀̇ 
(s

−1
) is the strain rate [1] – the relevant data can be obtained from the flow stress dataset. It should be 

noted, the data points of ln σ vs. ln 𝜀̇ should be fitted by cubic spline [11]. A graphical representation 

of the efficiency of power dissipation with respect to temperature and strain rate is known as so-called 

power dissipation maps [1, 12]. These maps simply reveal various domains which correlate with 

specific microstructural processes (e.g. DRV, DRX) [11]. Each microstructural process is associated 

with the specific η-range, e.g. η-values in the range of 30 – 50 % are typical for the DRX process and 

η-values above of 60 % are then attributed to superplasticity [12]. In order to detect the regimes of 

flow instability during hot deformation, a continuum criterion was proposed by Kumar [13] and 

Prasad [14] on the basis of Ziegler’s [15] principle of maximum rate of entropy production. In 

accordance with this criterion, flow instability can occur if [1]: 

 𝜉(𝜀̇) =
𝜕 ln(

𝑚

𝑚+1
)

𝜕 ln 𝜀̇
+ 𝑚 ≤ 0 (5) 

In equation (5), ξ(𝜀̇) is the parameter of flow instability. The variation of this parameter with 

temperature and strain rate is then known as flow instability map [1]. The above mentioned processing 

maps are then given by superimposing of the flow instability maps over the power dissipation maps 

[11]. 

With use of the above described approach, the processing maps of the medium-carbon steel C45 

were assembled on the basis of two flow stress datasets. The first one is given by the experimental 

procedure. So, the experimental processing maps were compiled with use of five temperatures 

(1553 K, 1473 K, 1373 K, 1273 K and 1173 K) and four strain rates (0.1 s
−1

, 1 s
−1

, 10 s
−1

, 100 s
−1

). The 

second one is obtained on the basis of the mathematical description of the experimental dataset – when 

the flow stress was predicted at additional temperature levels. So, the predicted processing maps were 

compiled with use of ten temperatures (1553 K, 1523 K, 1473 K, 1423 K, 1373 K, 1323 K, 1273 K, 

1223 K, 1173 K and 1073 K) and four strain rates (0.1 s
−1

, 1 s
−1

, 10 s
−1

, 100 s
−1

). The processing maps 

were compiled at true strains of 0.2, 0.4, 0.6 and 0.8. Figure 3 shows the processing maps created 

altogether on the basis of experimental and predicted flow stress data. The contours clearly show the 



5th International Conference Recent Trends in Structural Materials

IOP Conf. Series: Materials Science and Engineering461 (2019) 012063

IOP Publishing

doi:10.1088/1757-899X/461/1/012063

5

efficiency of power dissipation, η, in percent. As mentioned above, the η-values in the range of 30 – 

50 % are typical in case of DRX process [12]. Based on this assumption, it can be concluded, the 

examined steel is undergoing through the DRX which is, of course, gradually evolved by an increasing 

strain level. 

 

  
(a) strain of 0.2 (b) strain of 0.4 

  
(c) strain of 0.6 (d) strain of 0.8 

Figure 3. Processing maps of the steel C45; experimental instability (light gray areas) and predicted 

instability (dark grey areas). 

 

It should be noted, the high value of power dissipation efficiency does not mean the necessarily 

unproblematic forming conditions. So, the flow instability criterion should be taken into account. The 

shaded areas represent the flow instability domains. Note there are two types of instability domains. 

The first one (light gray areas) corresponds to the instability domains which were revealed on the basis 

of the experimental flow stress dataset. The second one (dark grey areas) then relates to the instability 

domains which were achieved on the basis of the predicted flow stress dataset. It can be seen, there are 

two experimentally revealed instability domains at strain of 0.2. The first one is nearby the 

temperature of 1253 K and around the strain rate of 0.1 s
−1

. The second one is around of 1553 K and 

1 s
−1

. This second domain is, however, somewhat extended by the predicted flow stress dataset. In 

addition, the predicted dataset revealed another instability domain near to the temperature of 1153 K 

and strain rate of 100 s
−1

. Two distinct areas of instability flow are clearly visible at the strain of 0.4. 

The first one was calculated on the basis of the experimental dataset in the vicinity of 1253 K and the 

strain rate range of 0.1 s
−1

 – 1 s
−1

. The second one was revealed on the basis of predicted dataset in the 

temperature range of 1353 K – ca 1500 K and strain rate range of ca 17 s
−1

 – 100 s
−1

. Quite different 

situation occurs at the strain of 0.6. The experimental flow stress dataset reveals very insignificant 

instability area (close to 1253 K and 1 s
−1

). Nevertheless, the predicted dataset allowed revealing of 

instability area at the temperature range of 1300 K – 1353 K and the strain rate range of 32 s
−1

 – 
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100 s
−1

. Only one tiny instability area can be then observed at the strain of 0.8 – revealed just on the 

basis of the predicted dataset. Based on the above performed analysis can be stated, the experimental 

flow stress dataset can be insufficient in case of revealing of instability flow areas. The additional 

(predicted) flow stress dataset can be then used to reveal other areas of instability flow, so the 

assembled processing maps could be hypothetically more accurate. This hypothesis, however, should 

be proved by metallographic analyses. 

5 Conclusion 

Experimental flow curves of the C45 medium-carbon steel were mathematically described by means 

of two flow stress models in combination with an artificial neural network approach. Additional flow 

curves were then predicted to extend the experimental dataset. The experimental and predicted 

datasets were then used to compile processing maps of the examined steel. Results have showed the 

additional (predicted) dataset is helpful to reveal higher amount of flow instability areas. This fact 

should lead to the greater information capability of the assembled processing maps. Nevertheless, the 

metallographic analyses should be performed to confirm this assumption. 
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