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Abstract. Reduction of processing time is the goal of every business. In some cases, speeding 

up manufacturing processes is impossible or takes place at the expense of quality. The purpose 

of soft annealing is to obtain globular carbides in the microstructure. However, it is one of the 

most time-consuming heat treatment operations. Even its optimised versions require several 

hours of time. „Accelerated Carbide Spheroidisation and Refinement” (ASR) is an alternative 

process which can be performed using induction heating or thermomechanical treatment. It 

only takes several minutes to complete and has a beneficial effect on resultant mechanical 

properties. In this experiment, the impact of various microstructures in 54SiCr6 spring steel on 

hardening behaviour was explored. For this purpose, specimens with two different 

microstructures containing spheroidised carbides were produced by ASR accelerated annealing 

and by conventional soft annealing. Another initial microstructure, with lamellar pearlite, was 

obtained by hot rolling. It was found to have a certain effect as well. Quenched and tempered 

microstructures were observed using electron microscopy (SEM). Their mechanical properties 

were measured. The effects of various initial microstructures on resultant mechanical 

properties after cryogenic treatment were studied as well. 

1 Introduction 

Soft annealing inserted prior to hardening is an important stage in the treatment of springs. Parts from 

spring steels are mostly subjected to alternating cyclic stresses and relaxation, which is why 

manufacturers strive to improve their yield strength and ultimate strength while maintaining their 

ductility [1]. Accelerated Spheroidisation and Refinement (ASR) is one way to produce spheroidised 

microstructure [2]. The classical method is soft annealing, which is lengthy due to diffusion processes 

involved. The material is held near the Ac1. Where shorter times are required, slow cycling around Ac1 

is often used. Diffusion, a slow and long process, is required for carbides to change from the lamellar 

to the globular form. At long annealing times, the carbides which are already globular undergo 

Ostwald ripening. Consequently, their particles coarsen and their thermodynamic potential decreases, 

resulting in lower hardness and strength [3]. 

The ASR process is much less time-consuming. In its accelerated annealing, it relies on rapid 

cycling around the Ac1 temperature. The partial austenitization and transformations accelerate the 

formation of globular particles [3]. Fully spheroidised microstructure can thus be attained within 

minutes without coarsening. The result is uniformly-dispersed fine globular carbides. 

Morphological distinctions between the products of soft annealing and ASR, particularly the 

particle size, are reflected in mechanical properties as well [4]. 

They can mislead those who evaluate the extent of carbide spheroidisation. The reason is that 

successful spheroidisation is usually defined as 95% of carbides being in the spheroidal form. 
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However, morphological criteria are rarely set in engineering practice and the only criterion for 

spheroidisation annealing is the maximal permissible hardness of the treated material. ASR-

processed material may meet the morphological criteria but fail to meet the hardness limits 

imposed on soft-annealed material [5]. In still other cases, the differences between spheroidised 

microstructures obtained by different methods may affect the kinetics of the subsequent processes, 

such as quenching. The experiments reported in this paper explored the impact of the initial 

microstructure of 54SiCr6 spring steel on its mechanical properties and microstructure after 

quenching and tempering. The initial microstructures either contained globular carbides (cementite) 

produced by either conventional long-time soft annealing (SA) or accelerated annealing (ASR) – or 

lamellar cementite obtained by hot rolling (HR). In some sequences, cryogenic treatment was 

performed between the quenching and tempering operations. The motivation was to find whether it 

reduces the effects that the initial microstructure may have or whether differences between 

mechanical properties will be retained [6]. 

2 Materials and methods 

The experimental steel was the 54SiCr6 grade, which is used widely for the manufacture of springs. 

The steel was made at COMTES FHT a.s. The chemical composition of the steel is given in table 1. It 

was cast in a vacuum induction furnace, then forged, hot-rolled, and air-cooled after rolling. 
 

Table 1. Chemical composition of the experimental steel 54SiCr6. 

Element C Si Mn Cr Mo Cu P S Fe 

wt. % 0.57 1.51 0.68 0.75 0.03 0.01 0.008 0.003 bal. 
 

 

Carbide spheroidisation was carried out using two different sequences. The accelerated 

spheroidisation process (ASR) was completed using medium-frequency (fmax=17 kHz) induction 

heating equipment with a maximum power of 24 kW. The specimens were 20 mm-diameter bars 

with 130 mm length. Temperature was measured with a thermocouple welded onto the specimen. 

The ASR sequence comprised of three thermal cycles with follows regime: heating at 19°C/s to 

820°C, holding for 15 seconds, cooling in still air (at approx. 1.5°C/s) to 725°C and holding for 5 

minutes. This was followed by 

cooling in still air to 600 °C. The 

second cycle was identical. In the 

third cycle, the hold at 725°C was 

extended to 10 minutes. The final 

step was cooling in still air to the 

ambient temperature.  The sequence 

is plotted in figure 1. The total 

duration of the spheroidisation stage 

was approximately 30 minutes. 

 

Figure 1. ASR induction heat treatment for the 54SiCr6 grade 

 

Soft annealing (SA) was performed in an electrical air furnace. Specimens had the same size as 

those for the ASR sequence. In the SA sequence, the material was held just above the Ac1. The 

sequence was as follows: heating at 10°C/min to 720°C, then at 15°C/hour to 770°C, holding for 

5 hours, furnace cooling at 5°C/hour to 720°C, then at 25°C/hour to 650°C, free cooling in the 

furnace to 400°C and then cooling in still air. The total time until removal from the furnace was 

approximately 27 hours. With this steel, the slow cooling at 5°C/hour in the soft annealing 

sequence and the isothermal hold at 725°C in the ASR sequence were necessary for preventing 

formation of new cementite lamellae. 
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Quenching and tempering was carried out in electrical air furnaces. Quenching temperatures were 

in the range from 810 to 890°C and the soaking time was 20 minutes. The quenching medium was 

oil. Tempering at 400°C/2 hours was followed by cooling in air.  

Cryogenic treatment (CT) was performed in a cryogenic box. The sequence comprised cooling to 

-160°C over 1 hour, holding for 20 hours and reheating to 20°C in 1 hour. 

The effects of the differences between initial microstructures and heat treating sequences were 

studied in the processed specimens using scanning electron microscopy (SEM) and mechanical 

testing, which involved measurement of hardness and tensile tests. 

3 Results and discussion 

 3.1 Initial state of material 

The initial microstructure after hot rolling (HR) 

was pearlite with hardness of 290±7 HV10. The 

microstructure was homogeneous, composed of a 

ferritic matrix and lamellar cementite (figure 2). 

Both spheroidised microstructures, post-SA and 

post-ASR, contained globular cementite particles 

in a ferritic matrix. In addition, there were some 

scarce cementite lamellae in them. Soft annealing 

(figure 3) produced large globular particles up to 

2 μm in size. By contrast, the ASR sequence 

(figure 4) led to densely-dispersed small globular 

cementite particles (0.5 μm max.) in a ferritic 

matrix. The hardness after long-time soft 

annealing was 207 ± 1 HV10. After ASR, it was 

higher by 17 points, owing to a finer 

microstructure. Both values meet the delivery specifications for 54SiCr6 steel annealed to obtain 

globular cementite. 
 

 3.2  Quenching and tempering 

Quenching was performed from 810, 830, 850, 870 and 890°C. The austenitizing time was 20 minutes. 

Soft-annealed specimens, which were quenched from 810, 830 and 850°C, contained, in addition to 

martensite and undissolved cementite, some ferrite grains. With higher quenching temperatures, the 

matrix was fully martensitic. The amount of undissolved cementite decreased with increasing 

Figure 2. Microstructure after hot rolling (HR) 

Figure 3. Microstructure after soft annealing 

(SA), 207 HV10 

Figure 4. Microstructure after accelerated 

annealing (ASR), 224 HV10 
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quenching temperatures. Yet, some undissolved globular cementite was found in the material upon 

quenching from 890°C. In the soft-annealed material, the largest undissolved cementite particles had a 

size of approx. 1000 nm. They remained in the material even after quenching from higher 

temperatures (figure 5) because the smaller ones had dissolved more quickly. 
 

 

Quenched ASR specimens only contained ferrite after quenching from 810°C. Fine globular 

cementite dissolved much more readily. After ASR, the maximum size of undissolved cementite 

particles was 300 nm (figure 6). Following the quench from 870°C, undissolved cementite was 

rare. After quenching 890°C, it was dissolved completely. 

Quenching of pearlitic specimens obtained by hot rolling had similar results. Lamellar cementite 

austenitized even faster than the globular structure after ASR. Some remaining ferrite grains were 

also found after quenching from 810°C. Their amount was smaller than in the other cases. The 

largest undissolved cementite particles in the martensitic matrix had a size of 200 nm. A summary 

of the austenitizing experiment is given in table 2. 
 

Table 2. Austenitizing (the highest Tquench upon which 54SiCr6 steel still contains a particular phase) 

 Soft annealing (SA) Accelerated annealing (ASR) Hot rolling (HR) 

Ferrite 850 °C 810 °C 810 °C 

Undissolved cementite 890 °C 870 °C 870 °C 
 

During tempering, cementite precipitated within and along martensite plates. Apart from the size of 

undissolved cementite particles, no differences were found between tempered microstructures 

obtained in specimens in different initial conditions. 

 Hardness is in agreement with the 

microstructure, as seen in figure 7. When the 

extent of austenitization proved insufficient 

(ferrite in the microstructure) in the specimens, 

lower hardness levels were found. Hot-rolled 

and ASR-treated specimens proved well-

hardened even upon quenching from 830°C but 

the soft annealed ones required 870–890°C. 

The dissolution of remaining cementite 

particles has not led to a major increase in 

overall hardness. After transformation of ferrite 

to austenite, hardness appeared almost constant.  

 

Figure 5. Quenched sample SA 870°C,  

742 HV10, (C – undissolved cementite) 

Figure 6. Quenched sample ASR 830°C, 

756 HV10, (C – undissolved cementite) 

 

Figure 7. Hardness after quenching and tempering 

for 54SiCr6 
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Maximum hardnesses were similar for all initial conditions. When quenching was appropriate, the 

hardness level was around 750 HV10 and the hardness upon tempering was approx. 550 HV10. 
 

In the ASR-treated material, carbides dissolved almost as quickly as lamellar pearlite. In soft-

annealed material, austenitizing was retarded, as cementite was present in large globules whose 

neighbourhood was depleted of carbon. Hence, slower dissolution of large particles and the need 

for long-distance diffusion of carbon poses greater demands on austenitizing prior to quenching. 

The desired properties were only attained once the quenching temperature had been raised to 870°C 

or higher. 

The ASR process therefore combines the advantages of soft-annealed initial condition and lamellar 

pearlite. Thanks to fine carbides, austenitizing is rapid and high quenching temperatures are not 

needed. In 54SiCr6 steel, the difference in quenching temperatures is 40°C. Globular morphology 

of cementite guarantees the reduction in hardness which is the purpose of soft annealing. 

In cryogenically-treated (CT) material, the microstructure was examined and hardness was 

measured as well. The sequences involving SA and quenching temperature of 870°C and ASR a 

HR with the quenching temperature of 830°C were selected for this purpose. However, no 

differences from non-CT tempered microstructures were found in these specimens using scanning 

electron microscopy (SEM). Despite that, their hardness levels were higher. Upon tempering, the 

increase was approx. 20 HV10. Hardness values after cryogenic treatment are shown in table 3. 

3.3  Tensile tests 

Room-temperature tensile tests were in accordance with ČSN EN ISO 6892-1. The gauge sections had 

a size of Ø10×60 mm. The thread in the head was M16 and the total length of the specimens was 

110 mm. Specimens prepared by sequences with quenching temperatures of 830 and 870°C were 

chosen. They were tested in tempered condition. Results of the tensile tests are given in table 3. 

The readings obtained after soft annealing and quenching from 830°C suggested that 

austenitization had been insufficient. With 870°C, the yield strength was 1635 MPa and the 

ultimate strength reached 1834 MPa. After ASR (830°C), yield strength and ultimate strength were 

higher by 66 MPa and 43 MPa, respectively. There was no appreciable difference between the 

conditions obtained by quenching from 830°C and 870°C after ASR. The ASR material quenched 

from 870°C had the highest elongation and reduction of area, despite its yield strength and ultimate 

strength being higher than in the SA material. The hot-rolled material quenched from 830°C 

showed an even higher yield strength and ultimate strength (by 18 MPa and 31 MPa, respectively) 

than the ASR material. However, its elongation and reduction of area was similar to the values 

upon SA. After quenching from 870°C, mechanical properties were slightly lower. This means that 

the microstructure with lamellar pearlite (HR) began to coarsen at higher quenching temperatures. 
 

Table 3. Final results of tensile tests and hardness 

 

Cryogenic treatment led to higher ultimate strengths and yield strengths. The increases in yield 

strength were 129 MPa, 85 MPa and approx. 52 MPa in materials after SA, ASR and HR, 

respectively. To some extent, they compensated for the differences in strength characteristics 

Heat treatment Rp0.2 [MPa] Rm [MPa] Ag [%] A5 [%] Z [%] HV10 

SA 830 °C 1592 ± 4 1766 ± 5 3.1 ± 0.1 8.1 ± 1.0 15.3 ± 2.5 515 ± 3 

SA 870 °C 1635 ± 7 1834 ± 12 3.4 ± 0.1 8.9 ± 0.2 16.5 ± 0.5 544 ± 2 

SA 870 °C + CT 1764 ± 23 1943 ± 19 2.6 ± 0.1 8.0 ± 0.1 30.5 ± 0.6 566 ± 2 

ASR 830 °C 1701 ± 17 1877 ± 16 3.1 ± 0.1 8.1 ± 0.9 16.4 ± 2.7 547 ± 2 

ASR 830 °C + CT 1786 ± 10 1957 ± 9 2.5 ± 0.1 8.4 ± 0.1 35.8 ± 0.6 567 ± 4 

ASR 870 °C 1694 ± 22 1875 ± 13 3.1 ± 0.1 9.7 ± 0.2 22.0 ± 0.5 548 ± 6 

HR 830 °C 1719 ± 3 1908 ± 7 3.1 ± 0.1 8.9 ± 0.3 17.5 ± 1.1 553 ± 2 

HR 830 °C + CT 1771 ± 11 1951 ± 12 2.4 ± 0.1 7.0 ± 1.1 28.0 ± 3.7 575 ± 3 

HR 870 °C 1666 ± 9 1867 ± 6 3.2 ± 0.2 8.6 ± 0.8 15.9 ± 0.4 534 ± 7 
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(table 3). After ASR, the ultimate strength and yield strength were slightly higher than in other 

conditions, including the hot-rolled one. Greater differences remained in elongation and reduction 

of area. The best values were found after ASR: reduction of area was 35.8%. Following soft 

annealing, reduction of area was 30.5%. After hardening of the hot-rolled material with lamellar 

pearlite, the reduction of area was no more than 28%. 

The quenched and tempered ASR material probably had finer austenite grain, which was reflected 

in its reduction of area. This was made even more conspicuous by cryogenic treatment. Differences 

between strength characteristics were reduced, probably by precipitation of very fine eta carbides. 

Nevertheless, the smaller prior austenite grains led to better performance under triaxial load, as 

seen in increased reduction of area after ASR. 

4 Conclusion 

Effects of three different initial microstructures on mechanical properties and microstructures upon 

quenching, tempering and cryogenic treatment were studied in 54SiCr6 spring steel. The initial 

microstructures included lamellar cementite obtained by hot rolling (HR, 290 HV10), fine globular 

cementite after Accelerated Spheroidisation and Refinement (ASR, 224 HV10) and coarser globular 

cementite produced by soft annealing (SA, 207 HV10). 

Austenitizing was fastest in lamellar pearlite obtained by hot rolling. It was almost matched by the 

rate of dissolution of spheroidised carbides upon ASR. Austenitizing was much slower in soft-

annealed material where the appropriate quenching temperature proved to be 40°C higher than for 

the other microstructures. Maximum hardnesses upon quenching were the same for all three initial 

conditions. Dissolution of remaining carbides in austenite has not led to an appreciable increase in 

hardness appreciably. 

The ASR material showed higher tensile properties than the SA one. Quenching from 870°C led to 

higher yield strength and ultimate strength, by 59 MPa and 41 MPa, respectively. At the same time, 

elongation and reduction of area were higher by 0.8 points and 5.5 points, respectively. Quenched 

and tempered HR material (830°C) had slightly higher strength characteristics than the ASR 

material. However, its elongation and reduction of area was lower, similar to SA. 

Cryogenic treatment (CT) led to improved mechanical properties, while reducing the differences 

between yield strengths and ultimate strengths of materials with different initial conditions. This 

was not the case with elongation and reduction of area which still reflected the microstructures 

before quenching. The highest reduction of area was found in the ASR material: 35.8%. With SA, 

it was 5.3 points less and with HR even 7.8 points less. 
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