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Abstract —The high computational cost associated with first principle based numerical 

reservoir models create a barrier for realizing their full potential. Currently, high fidelity proxy 

models, capable of mimicking the numerical reservoir models, are used to undertake some of 

the tasks.  Nonetheless, large number of experimental simulations are required to generate 

modeling data. Moreover, experimental realizations are obtained by sampling static geological 

properties, hence, the resulting proxy model does not honor the dynamic nature of reservoirs, 

especially during immiscible water alternating gas injection (iWAG) process. In this study, a 

system identification based proxy modeling algorithm is developed for a reservoir under 

iWAG. A case study is used to evaluate the algorithm’s performance in reproducing oil, gas 

and water production rates. By systematically designing the input pattern, only a single 

experimental run is used to generate modeling data. A blind validation and a cross plot 

analysis resulted in an average percentage fit of 89% and a tolerance level of up to 10%, 

respectively. The algorithm can have potential application for optimization of injection 

scenario and hence for automatic well control during iWAG. 

Keywords—Numerical reservoir model; proxy model; water alternating gas 

injection; production prediction  

1. Introduction  

Different alternative methods have been studied in order to replicate the performance of full field 

numerical reservoir simulation models and at the same time decrease optimization time and operational 

cost [1]. Currently, proxy models are used to facilitate the full exploitation of the potential of reservoir 

simulators. These current approach of building a proxy model are based on either reduced order 

modeling [2], response surface based modeling [3] or surrogate reservoir modeling[4]. In addition to 

being expensive to build such types of proxy models, they have limitations. In reduced order modeling, 

the full numerical reservoir is reduced to a less complex and manageable model by upscaling the 

defining finite difference grid blocks and/or reducing the physics. Apart from being computationally 

expensive, the resulting simplified model may not truly represent the actual reservoir. In response 

surface based models, experimental simulation runs are undertaken at systematically selected design 

points to generate training and validation datasets. The design points are selected based on central 

composite design or Box-Behnken design of experiment techniques. Incases, where there are many 
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sensitive independents reservoir parameters the number of simulation runs required will be very large 

and hence large number of simulation runs will be required. For instance, in order to design an 

experiment based on the Box-Behnken sampling technique for ten sensitive and independent reservoir 

parameters 1025 simulation runs are required. This results in expensive computations. In addition, 

response surface models that are in use today does not honor the dynamic nature of reservoirs, 

especially when injection of a secondary fluid such as water and gas is involved.  

A more recent technique that is based on spatio-temporal data on a grid block basis and artificial 

neural network has claimed to reduce the number of runs to 15-20 [4, 5]. Even though the time and 

number of run has been significantly reduced, when compared with traditional proxy modelling, 

making 15-20 runs still requires a significant amount of time and effort. In addition, designing and 

organizing of a proper spatio-temporal data is a daunting and computationally expensive task.   The 

degree of success, particularly in practical aspects, of these approaches remains to be argued. 

Moreover, several runs have to be performed before a reliable model is built [6]. Development of 

alternative, modest and yet powerful mathematical models allow quick reservoir performance 

evaluation with an acceptable accuracy [7]. In this research, we developed an algorithm for potential 

application during the third stage of numerical reservoir modeling and simulation for secondary 

recovery phase. The algorithm employs system identification principles to construct proxy models.  

The idea of using system identification for development of a proxy model is not a new concept. 

However, only few studies have demonstrated the suitability of system identification for development 

of a proxy model of a reservoir [6]. Moreover, the studies are concentrated on injection of only a single 

fluid. In this study, a case study approach is used to evaluate the performance of a system identification 

based proxy modeling algorithm in order to develop a proxy model for a reservoir undergoing iWAG 

in secondary recovery mode. The case study involves a benchmark reservoir model  obtained from 

UNISIM research group in Brazil [8, 9].   

2. Algorithm for proxy modelling of a reservoir under iWAG 

 The proposed system identification based workflow is discussed in this section. The workflow 

begins by designing a suitable injection pattern which is bounded by an upper and lower limit. Once a 

proxy model is developed it can be utilized for optimization of multiple injection scenarios [10]. 

The set of procedures included in the workflow are: 

1. Design a suitable injection pattern and introduce it to numerical reservoir model input file 

2. Run numerical reservoir simulation  

3. Organize a dataset consisting of injection rate and production rates. 

4. Split the dataset set into modeling and validation data set 

5. Select an appropriate model structure (ARX, ARMAX, OE, BJ and their respective noise 

integrated versions.)  

6. Select model order between 1 and 10. 

7. Use the data reserved for modeling to estimate model parameters 

8. Cross-validate the infinite step ahead simulated output and validation data. 

9. If validation is not successful, then iterate by changing the selected model order.  

10. If validation is not successful, even after exploring several model orders, then change the 

model structure and continue the iteration as in step 9.  

11. If the validation is not successful, increase the number modeling data and repeat steps 6 to 10. 

12. Repeat steps 6 to 11 until a valid proxy model is obtained. 

3. System description: case study 

The case study deals with developing an alternative system identification based proxy model using 

data collected from a reservoir model under iWAG. The reference model is a benchmark reservoir 

model developed by the “Research Group in Reservoir Simulation and Management (UNISIM)” [11, 

12]. It was built in a high resolution geocellular model, using public data from Namorado Field, 

Campos Basin, Brazil. Geocellular models replicate the 3-D structure of a real reservoir, with the 

stratigraphic envelope, reservoir sublayers, and faults all represented in three dimensions. The original 

intention in developing the case was to create, test and compare new approaches related to reservoir 

development and management by research centers. The reservoir volume is meshed into smaller 3-D 

blocks, referred to as Grid blocks. The dimensions of each grid block are about 50 m (163 ft) thick 
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and 100m X 100m (328 X 328 ft) areally. There are a total of 93960 such grid blocks with 81,58 and 

20 blocks arranged in the x, y and z directions, respectively. The water-oil and gas-oil contacts are 

located at a depth of 3200m and 3000m, respectively. Initial oil originally in place is calculated to be 

175000 m3 and the initial reservoir pressure was 300bar. Figure 1 presents the top view of initial fluid 

distribution, well locations of the UNISIM reservoir model. Figure 2 displays the top view of fluid 

saturation at the end of simulation period. In both Figure 1 and Figure 2 100% water is represented by 

blue color, 100% gas is represented by red color and 100%  oil is represented by green color. The 

reservoir model has 17 production wells which are optimally placed and perforated at locations that 

favor maximum oil production. This includes high permeability, high pore volume, and high oil 

saturations.  In addition, 11 injector wells are introduced and optimized using streamline simulation 

options that indicates the streamline flows. Constrains on both injection and production wells were 

adopted from the original model.  

 

 

Figure 1. Initial fluid distribution of the UNISIM 

reservoir model 

 

Figure 2. Fluid distribution of the UNISIM 

reservoir model at the end of simulation period  

The reservoir model of Namorado field was modified so that all of the eleven injection wells inject 

water and gas alternatively while maintaining a PRBS form of injection pattern. Water and gas 

injection were allowed to alternate every 15 days. The resulting data were used to carryout system 

identification in a Two Input – Single Output (MISO) system mode where the total fluid production 

rate was considered as output and the total gas injection and total water injection rates were treated as 

two inputs to the system.  Data preparation for system identification includes visual inspection and 

selection of an appropriate and representative dataset. Injection and production data were made 

available for system identification by splitting them into modeling and validation datasets. A simple 

model such as an ARX model is identified and its transient response is studied, then more complex 

model structures are investigated by using the order and time delay, obtained in the first stage, as 

Table 1. Lower and upper bounds used in the design of a PRBS input during SWG. 

Well  

Name  

Gas injection 

Sm3/day 

Water injection 

 Sm3/day 

Water injection 

Sm3/day 

Water injection 

Sm3/day 

 Lower bound  Upper bound  

Well 1  40000 1500 140000 4500 

Well 2 45000 1750 145000 4750 

Well 3 50000 2000 150000 5250 

Well 4 55000 2250 155000 5550 

Well 5 60000 2500 160000 5750 

Well 6 65000 2750 165000 6000 

Well 7 40000 3000 155000 6250 

Well 8 45000 3250 160000 6500 

Well 9 50000 3500 165000 6750 

Well 10 55000 3750 165000 7000 

Well 11 60000 4000 155000 7250 
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initial approximation. The use of simpler model allows to obtain insight into the order and delay of 

more complex model structures that are capable of identifying the system more accurately. In this 

study, the inputs, gas injection rates and water injection rates were designed as a PRBS switching 

between two bounds as shown in Table 1, and at the same time alternating every 15 days. 

Injection of water and gas alternatively allows piston like displacement as displayed in Figure 3. 

This has the potential to effectively sweep the oil with only a small amount of residual oil. 

 

Figure 3. Physics of a reservoir flow during iWAG. 

4. Results and Discussion 

This section presents the results and discussions of modeling total oil, gas and water production rates, 

as a function of total gas injection and total water injection rates. The models obtained in this study 

can be useful for optimization of water and gas injection rates during iWAG.   

4.1. Modeling oil production  

This system has two inputs, namely total gas injection rate and water injection rate, and one output, 

viz. oil production rate. Figure 4 presents the modeling and validation data used in modeling oil 

production as a function of gas and water injection rates. A total of 2666 data at a frequency of 1/day 

were obtained from the reservoir simulator. The first 1500 data points were used for modeling and the 

next 10 data were removed to fulfill the requirements of predictive models. The remaining 1156 data 

points were used for cross validation.  

 

Figure 4. input and output data for modeling and validation of total oil production during iWAG 

injection. 
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The identification of a characteristic LTI model had started by identifying a simple ARX model. The 

model order and time delay of the identified ARX model was then used as initial approximation for 

further investigation into more complex model structures. More complex Polynomial LTI model 

structures (ARMAX, OE, and BJ) with and without noise integration had been thoroughly searched 

for a model that gives minimum error or best fit during validation.  This was done by systematically 

changing the time delays and orders of the defining polynomials in both the deterministic and 

stochastic components of each model structures until a model is successfully identified. As a result, a 

discrete-time Box-Jenkins Polynomial with Noise Integration model that exhibits a one-time delay 

and fourth order in all the coefficient polynomials is found to be an optimal estimator in terms of the 

percentage fit obtained. The model was named BJI (4-4-4-4-1). The percentage fit to modeling and 

validation data were found to be 99.94% and 89.96%, respectively. The mean squared error (MSE) 

and Final prediction error (FPE) were 1.037and 1.085. The BJI (4-4-4-4-1) model is presented below: 

    (1) 

where: 

 

 

 

 

 

 

A comparison plot of the identified BJI (4-4-4-4-1) model’s infinite step simulated output and 

validation data is shown in Figure 5. It can be observed that the model has successfully represented oil 

production rate as a function of gas and water injection rates.  

 

Figure 5. Validation of the BJI (4-4-4-4-1) 

mode. 

 

Figure 6. Cross plot for BJI (4-4-4-4-1). 

Figure 6 presents a cross plot obtained by plotting simulated output vs. validation data on a linear and 

square plot. It can be seen that the 45-degree line closely matches the cross plot indicating that the 

model does, neither underestimated nor overestimated during validation.   

4.2. Modeling gas production  

The previous session outlined and discussed modeling and validation of total oil production rate as a 

function of total water and total gas injection. This section applies the same procedure to model total 

gas production as a function of total gas and total water injection rates. Figure 7 shows the input and 

output data collected at a sampling frequency of 1/day from year 2005 to end of simulation year.  A 

total of 2666 data at a frequency of 1/day were obtained from the reservoir simulator. A simple visual 

inspection, shows that the first 500 data set is not representative of the dataset observed at a later time, 

hence, it was not considered during the modeling stage. The remaining data were used for 

identification. Data from 500 to 1500 were used for modeling and the next 10 data were removed to 
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fulfill the requirements of predictive models. The remaining 1156 data points were used for cross 

validation. 

 

Figure 7. Input and output data for modeling gas production during iWAG injection. 

At first an ARX and ARIX model structures, a simple model structures, were searched for by 

systematically changing their model order and time delay. The best estimating ARX or ARIX model’s 

order and time delay were then utilized as initial approximation for further investigation into more 

complex model structures. of Consequently, a Box-Jenkins model of order seven in all the numerators 

and denominators and a one-time delay was found to produce best estimation in terms of calculated 

percentage fit. The model was named BJ (7-7-7-7-1) and it was cross-validated using data that has not 

been employed during the modeling stage. Figure 8 presents a comparison between validation data 

and simulated output of the identified model. The fit to estimation data was 99.86% and the fit to 

validation data was 91.06%. Final prediction error (FPE) and mean square error (MSE) were 6076 and 

9892, respectively. By removing the first 500 points, the percentage fit has improved when compared 

to a similar identification process with all the data points included. The best match which captured the 

gas production rate dynamics during identification and while using the whole set of data was 60.71%.  

This case serves as an example of the importance of inspecting of input and output data prior to 

splitting the data into modeling and validation.    

 

Figure 8. Validation of the BJ (7-7-7-7-1) model 

 

Figure 9. Cross plot analysis for model BJ (7-7-

7-7-1). 
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The discrete time BJ (7-7-7-7-1) model is presented below:  

    (2) 

where 

 

 

 

 

 

Figure 9 presents a cross plot analysis of an infinite step ahead prediction and validation data. The 

plot was made by first concatenating the two data and sorting them in ascending order. The plot is 

almost in line with the 45-degree line indicating that the identified mode has neither underestimated 

nor overestimated during validation.   

4.3. Modeling water production  

In addition to modeling oil and gas production, modeling water production is also an essential task. 

This section demonstrates the application of system identification in building a proxy model for 

capturing the relationship between total water production rate, total water injection rate and total gas 

injection rate during water alternating gas flooding. Data for identification were collected by proper 

excitation of the Namorado field’s numerical reservoir model. The same simulation run that produced 

the gas and oil production rates in the previous two sessions also provided water production rate. 

Figure 10 presents the input and output data used for modeling and cross validation of a polynomial 

model. A total of 2666 data at a frequency of 1/day were obtained from the reservoir simulator. 

However, a simple visual inspection of the data revealed that the reservoir’s response has only begun 

after 500 days of injection and production. This signifies that the first 500 data is not useful for 

identification. Hence, data points from 500 to 1500 were used for modeling and the next 10 data were 

removed to fulfill the requirements of predictive models. The remaining 1156 data points were used 

for cross validation. 

 

Figure 10. input and output data for modeling and validation of total water production during gas 

injection. 

Identification of a suitable model has beggun by first exploring a simpler polynomial model 

structure, ARX, and its noise integrated version, ARIX. We found that an ARX model whose order is 

eight in both the numerators and denominators and a zero-time delay was the best estimating model in 
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terms of the percentage fit exihibited.  This model was named ARX (8-8-0).  Using ARX (8-8-0) as 

initial estimate, more complex model structures were searched.   We found a noise integrated Box-

Jenkin model that has a model order of four in all the numerator and denominator polynomilas and a 

zero-time delay to best fit the validation data. This model was named BJI (4-4-4-4-0) and was 

validated using the validation data. The fit to estimation and independent validation data were found 

to be 99.86% and 60.52%. Moreover, the final prediction error and mean square error were calculated 

to give 2.727 and 425.2, respectively. Figure 11  presents a graphical comparison between validation 

data and simulated output. It is observed that the identified model has closely predicted total water 

production during validation. The structure and polynomial coefficients of BJI (4-4-4-4-0) model are 

shown below:    

   (3) 

where: 

 

 

 

  

 

  

 

Figure 11. Validation of model BJ (7-7-7-7-0). 

 

Figure 12. Cross plot analysis of model BJI (4-4-

4-4-0). 

Crossplot analysis was also conducted to find out whether the model has overestimated, 

underestimated or well estimated the output. This is realized by first sorting and plotting simulated 

output vs. validation data and comparing the plot with a straight 45-dgree line. Figure 12 shows that 

the model does not underestimate or overestimate the production of water at the early stage of the 

production.  

5. Conclusion 

The large computational time required to make simulation runs inhibit the full exploitation of the 

potential of numerical reservoir models. In this study, an algorithm that infuses system identification 

via LTI model structures and numerical reservoir models is proposed and evaluated. The resulting 

outcome is a proxy models to replace the role of numerical reservoir simulators. As opposed to 

current methods of proxy modeling, system identification based proxy models require only a single 

experimental run with and a pseudo random binary sequence form of injection pattern. The 

application is demonstrated by using a benchmark case study obtained from UNISIM, a research 

group established in 1996 and focused on studies related to numerical simulation and management of 

petroleum reservoirs. The case study involves a reservoir model with 18087 active grid blocks with 11 

injectors and 19 producers which are optimally placed. Proxy models are developed to represent oil, 

gas and water production rates as a function of alternating water and gas injection rate. A percentage 

fitness test followed by whiteness test and cross plot analysis were used to measure the performance 

of the developed models. As a result, an average percentage fit of 89% is obtained indicating that the 
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algorithm is reasonably efficient. The crossplot analysis also reveal that the developed proxy models 

are accurate and have a tolerance level of up to 10%. With this performance the algorithm can be 

useful for well setting and production optimization purposes.  
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