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Abstract. This paper presents a new method of tuning decentralized Proportional Integral 

Derivative (PID) control system for an n×n Multi Input Multi Output (MIMO) processes which 

can be either open-loop stable or unstable with time-delays. The tuning method has been 

established via the classical Routh-Hurwitz criteria with the aid of PID stability theorem. This 

new tuning method requires only 3 common tuning parameters, thus simplifying the 

conventional multi-loop PID tuning task to obtain the values for 3n PID parameters. Two 

numerical examples are presented to demonstrate the effectiveness of the proposed tuning 

procedure over some of the existing multi-loop PID tuning procedures. The proposed tuning 

procedure shows a good performance as well as able to simplify the tuning task as compare to 

the existing tuning method. 

1.  Introduction 

Most real processes in industries are multi-input and multi-output (MIMO) in nature and possess 

significant time-delays or deadtimes. These criteria lead to an unstable process behaviour. Decentralized 

(or multi-loop) PID control systems are widely used to control process plants. Controlling a MIMO 

process is not as simple as controlling a single-input and single-output (SISO) process because of the 

existence of process interactions or couplings. Process interactions and deadtimes impose an upper 

bound on the achievable maximum control performance. If a given MIMO process open-loop is 

unstable, then the unstable poles in the system will impose a lower bound on the allowable minimum 

control performance. To control an unstable process, the PID controller parameter values must be well 

tuned within the maximum lower bound and minimum upper bound of the control performance for a 

stable operation. 

For an 𝑛 × 𝑛 MIMO system, there are 𝑛 PID controllers involved with a total of 3𝑛 tuning 

parameters. The decentralized PID tuning methods can be categorized into: (1) detuning, (2) sequential 

loop closing, (3) iterative or trial-and-error, (4) simultaneous equation solving and (5) independent 

tuning; see [1]. A significant innovation in the decentralized PID control tuning was proposed in [2], 

known as the Simultaneous Multi-Loop Multi-Scale Control (SML-MSC) tuning, based on the Multi-

Scale Control theory in [3], [4]. The salient feature of the SML-MSC method is that it only requires 2 

to 3 scaling parameters in order to tune an arbitrary 𝑛 × 𝑛 multi-loop PID system. However, the 

technique is restricted to open-loop stable MIMO processes, in which the diagonal processes can be 
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represented by first-order plus deadtime (FOPDT) models. The SML-MSC tuning is easy to apply 

compared to other tuning methods.  

For SISO systems, the closed-loop stability for the standard PID control system has been well 

studied. Several stability methods have been developed for assessing the closed-loop stability of PID 

controllers, e.g., the stability analysis based on the Hermite-Biehler theorem [5], the Gain-Phase Margin 

stability analysis [6], and the classical Routh-Hurwitz criteria [7]. On the contrary, the closed-loop 

stability analysis that is applicable to the multi-loop PID system remains an open problem. 

The present work attempts to address the multi-loop PID control system design via the recently 

published SISO PID stability theorem, based on the classical Routh-Hurwitz stability criteria [7]. An 

advantage of the reported PID stability theorem is that, it can be conveniently used to find a stabilizing 

region of PID parameters both for open-loop stable or unstable processes. Through this PID stability 

theorem, we can reduce the tuning of multi-loop PID control controllers to just finding the values of 3 

common tuning parameters for an arbitrary 𝑛 × 𝑛 MIMO system. Unlike the SML-MSC tuning method 

in [7], the new simultaneous tuning technique developed in this work is applicable to both open-loop 

stable and unstable processes. 

The main contributions of this work can be summarized as follows: 

 Decentralized PID control tuning for a class of stable MIMO systems (Section 4). 

 Decentralized PID control tuning for a class of unstable MIMO systems (Section 4). 

The rest of this paper is organized as follows. Section 2 presents some preliminaries. Then, Section 

3 details the derivations of tuning relations. Next, Section 4 provides two new tuning algorithms 

followed by Section 5 which demonstrates the applicability of the PID tuning algorithms. Finally, some 

concluding remarks and future works are highlighted in Section 6. 

2.  Preliminaries 

Consider the ideal form of Proportional-Integral-Derivative (PID) controller 
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where 𝐾𝑐 , 𝜏𝐼 and 𝜏𝐷 represent the controller gain, reset time and derivative time respectively. 

In the industry, many processes which are open-loop stable can be expressed as a first-order plus 

deadtime (FOPDT) model given by 
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where 𝐾𝑝, 𝜏𝑝 and 𝜃 are the process gain, time constant and deadtime respectively. 

Take note that, some of the processes which are open-loop unstable can be expressed by an unstable 

first-order plus deadtime (UFOPDT) model given as follows 
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Figure 1 shows the standard single-loop feedback control. Here, 𝐹𝑟 denotes the setpoint pre-filter, 𝐺𝑐 

the controller and 𝑃 the process transfer functions; 𝑅, 𝐷𝑖, 𝐷𝑜 and 𝑌 denote the setpoint, input disturbance, 

output disturbance and controlled variable signals respectively. 
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Figure 1. Standard single-loop feedback control structure. 

For the standard single-loop control structure in figure 1, the closed-loop setpoint tracking and output 

disturbance transfer functions are given by (4) and (5), respectively. 
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The closed-loop characteristic equation for both transfer functions are similar, i.e.: 

 0)()(1  sGsG pc  (6) 

Since the closed-loop transfer functions have a similar characteristic equation, this means that if the 

controller is stable for the setpoint tracking, then it should be stable also for the output disturbance 

rejection. 

To perform the stability analysis on the closed-loop characteristic equation, it is convenient to first 

approximate the deadtime term as a rational transfer function, e.g., by using the 1/1 Padé approximation 

given as follows 
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where 𝛼 = 0.5𝜃. 

3.  SISO PID stability analysis 

3.1.  Stability region determination 

Let us consider the stabilizing regions of PID controller for the two process types given as FOPDT and 

UFOPDT as Cases A and B respectively. 

3.1.1.  Case A: FOPDT. Based on the first-order Padé approximation of the deadtime, the closed-loop 

characteristic equation can be simplified to a polynomial as follows: 

          023  KsKsKsK IIDpIDpI   (8) 

Please note that the loop gain is 𝐾 = 𝐾𝑐𝐾𝑝. To establish a stabilizing region of PID controller, let us 

apply the two PID stability theorems established by Seer and Nandong [7]. By using the first part of PID 

stability theorem, we can construct a region of PID parameters which can meet the necessary criterion 

of Routh-Hurwitz stability.  

It can be shown that via the first stability theorem, the ranges of derivative time, reset time and loop 

gain are given as follows 

  D  (9) 
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To meet the sufficient criterion of Routh-Hurwitz stability, the second part of PID stability theorem 

[7] is applied. The sufficient condition for the closed-loop stability is given by 

 ),max( min, AII    (12) 

with the assumption that the derivative time and loop gain values are first set to be within the region 

established by the first part of stability theorem, i.e., as in (9) and (11). Note that 𝜏𝐼,𝑚𝑖𝑛 is the lower limit 

on the reset time established via the sufficient criterion of Routh-Hurwitz stability – the second part of 

PID stability theorem. 
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3.1.2.  Case B: UFOPDT. By applying the first PID stability theorem; see [7], a region of PID 

parameter values fulfilling the necessary criterion of Routh-Hurwitz stability is established as follows: 
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Provided that the derivative time and loop gain are within the region defined by the first stability 

theorem, to ensure closed-loop stability the second PID stability theorem is applied. This results in the 

following range for the reset time 

  
BB III 2min,1min, ,max     (17) 

Another lower limit of the reset time is given by the sufficient criterion of Routh-Hurwitz stability: 
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4.  Decentralized PID tuning procedure 

4.1.  Tuning relations 

 

Let us introduce three dimensionless scaling parameters denoted as 𝑟𝑝, 𝑟𝑑 and 𝑟𝑖. These parameters are 

used in the decentralized PID controller tuning, i.e., to obtain the values of 𝐾𝑐 , 𝜏𝐼 and 𝜏𝐷. All the tuning 

relations required for cases A and B are summarized in the following sections. 

4.1.1.  Tuning relations for case A. The following relations are used for tuning the decentralized PID 

control for Case A. 

 1,  ddD rr   (19) 
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4.1.2.  Tuning relations for case B. The proposed tuning relations for a class of open-loop unstable 

MIMO system are given as follows: 
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4.2.  MIMO model assumptions 

In order to use the case A tuning relations, we make the following assumptions. 

 Assumption A.1: A class of 𝑛 × 𝑛 MIMO system P. 

 Assumption A.2: All diagonal transfer functions 𝑔𝑖𝑖 , 𝑖 = 1, 2, … 𝑛 can be approximated by the 

FOPDT model in (2) – consider direct controller pairings are used. 

 Assumption A.3: All transfer function in the plant matrix (P) are open-loop stable, i.e., none 

of them with an unstable or integrating pole. 

 Assumption A.4: The PID controller for any given i-th control loop is designed by using the 

corresponding diagonal transfer function 𝑔𝑖𝑖, i.e., direct controller pairings are adopted. 

 Assumption A.5: The time-constant to deadtime ratio of a diagonal transfer function 

(𝜏𝑝𝑖𝑖
/𝜃𝑖𝑖  ) > 1. 

Meanwhile, to use Case B tuning relations, the following assumptions are applied: 

 Assumption B.1: A class of 𝑛 × 𝑛 MIMO system as represented by (25). 

 Assumption B.2: All diagonal transfer functions 𝑔𝑖𝑖 , 𝑖 = 1, 2, … 𝑛 can be approximated by the 

UFOPDT model in (3). 

 Assumption B.3: All transfer functions in the plant matrix (P) are open-loop stable except for 

the diagonal transfer functions. 

 Assumption B.4: The PID controller for any given i-th control loop is designed by using the 

diagonal transfer function 𝑔𝑖𝑖, i.e., direct controller pairings are adopted. 

 Assumption B.5: The ratio of time-constant to deadtime of a diagonal transfer function 

(𝜏𝑝𝑖𝑖
/𝜃𝑖𝑖  ) > 1.  

4.3.  Tuning algorithm 1 

This tuning algorithm is applied to Case A. 

Step 1: Arrange the plant matrix (P) so that the Relative Gain Array (RGA) gives direct controller 

pairings. 

Step 2: Use initial settings (𝑟𝑝 = 0.2, 𝑟𝑖 = 5, 𝑟𝑑 = 2). 

Step 3:Performance Evaluation 
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 Method 1: Time-domain plots. From the step responses for setpoint tracking and output 

disturbance rejection, observe whether desired responses are achieved or not. If not, go back 

to step 2, and readjust the parameters. 

 Method 2: Optimization-based technique to obtain optimal values of 𝑟𝑝, 𝑟𝑖  and 𝑟𝑑 that 

minimizes the total Integral Absolute Error (IAE) value. 

The recommended ranges for scaling parameters are as follows: 

 55.1,82,6.01.0  dip rrr  (25) 

4.4.  Tuning algorithm 2 

This tuning algorithm is applied to Case B. 

Step 1: Arrange the plant matrix (P) so that the Relative Gain Array (RGA) suggests direct controller 

pairings. 

Step 2: Use initial settings (𝑟𝑝 = 0.2, 𝑟𝑖 = 2, 𝑟𝑑 = 0.1). 

Step 3:Performance Evaluation 
Can either use Method 1 or Method 2 as mentioned in the algorithm 1. 

Recommended ranges for the scaling parameters are given by 

 25.001.0,65.1,6.02.0  dip rrr  (26) 

5.  Numerical examples 

5.1.  Example 1 

Consider an industrial distillation process (case A) reported in [8]. In a decentralized control design, it 

is crucial to first determine the right controller pairings. This can be done by applying the Relative Gain 

Array (RGA) analysis; see [9]. The diagonal RGA values are 1.0926, 0.1039 and 0.0983. These suggest 

that the direct controller pairings should be adopted, i.e., 𝑈1 − 𝑌1, 𝑈2 − 𝑌2, 𝑈3 − 𝑌3 pairings where 𝑈𝑖 

and 𝑌𝑖 denote i-th input and output respectively.  

Two running values obtained via the proposed Routh-Hurwitz (RH) method are compared with the 

SML-MSC tuning [2]. Here, we consider two sets of RH tuning: set 1 with rp = 0.15, ri = 6 and rd = 4 

while set 2 with rp = 0.3, ri = 6 and rd = 4. The set 1 tuning leads to Kc = [-7.092, -5.428, -0.109], I = 

[200, 24.3, 27.2], and D = [1.42, 1.36, 3.18]. Meanwhile, the set 2 yields Kc = [-14.18, -10.86, -0.2185], 

I = [200, 24.2, 29.4] and D = [1.42, 1.36, 3.18]. To evaluate the closed-loop performances 

corresponding to the different tuning values, sequential step changes of 1 unit each in the setpoints of 

Y1,Y2 and Y3 are applied. Figure 2 shows the comparative closed-loop responses under the different 

controller tunings. The proposed R-H tuning can provide improved performance in term of the total 

Integral Absolute Error (IAE) value over the SML-MSC tuning. Note that, the closer the loop gain to its 

upper limit (or as the tuning parameter rp increases), the faster the closed-loop responses become. 

However, due to process interactions and deadtimes, there is an upper limit on the rp above which the 

system becomes unstable. To ensure closed-loop stability, we recommend the value of rp to be between 

0.1 and 0.5. When the interactions among the control loops become more severe, a smaller value of rp 

should be used to ensure closed-loop stability. 

5.2.  Example 2 

In this example, we consider a 2x2 unstable system 
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Figure 2. Setpoint responses for example 1. 

 

For this unstable process (27), the R-H tuning (Case B) is adopted. Note that, many of the existing 

methods for the decentralized PID control tuning are not applicable to this type of unstable MIMO 

system. For an unstable system under PID controller, it is quite common to encounter a large overshoot 

in response to a setpoint change. To reduce this large overshoot, it is recommended to use a setpoint 

pre-filter which takes the form of 
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where 𝜏𝐼 is the reset time of the given PID controller, and 𝜀 is a positive scaling parameter. The 

recommended range of the scaling parameter is between 1.5 and 5. The control performances are 

evaluated based on sequential step changes of 1 unit each in the setpoints of 𝑌1 and 𝑌2. Figure 3 shows 

the comparative closed-loop responses corresponding to two different tuning values: set 1 with 𝑟𝑝 =

0.6, 𝑟𝑖 = 2, 𝑟𝑑 = 0.05 and set 2 with 𝑟𝑝 = 0.4, 𝑟𝑖 = 2, 𝑟𝑑 = 0.05. Set 1 tuning leads to 𝐾𝑐 =

[3.579, 2.642], 𝜏𝐼 = [31.9, 37.6] and 𝜏𝐷 = [2.425, 3.475] while set 2 tuning leads to 𝐾𝑐 =
[2.615, 1.979], 𝜏𝐼 = [39.4, 47.4] and 𝜏𝐷 = [2.425, 3.475]. For this system, it is not possible to increase 

the loop gain all the way close to its upper limit because of the process interactions. Also note that, 

reducing the loop gain so that it becomes too close to its maximum lower limit can cause the system to 

exhibit high oscillation. The closed-system can become unstable if the loop gain becomes too near to 

either its minimum upper limit or its maximum lower limit. 
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Figure 3. Responses for example 2. 

6.  Conclusion 

A tuning method has been proposed via which we can simplify the tuning task from finding 3𝑛 PID 

parameters to finding only 3 common tuning parameters, namely 𝑟𝑝, 𝑟𝑖 and 𝑟𝑑. This represents a great 

simplification for an otherwise very complicated tuning problem. 
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