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Abstract. Dynamic phenomena at liquid-liquid interface during transesterification of corn oil 

was investigated by using a pendant drop method. The drop volume of corn oil gradually 

decreased as time proceeds because of the dissolution of the products such as fatty acid methyl 

ester and glycerol in methanol. The drop volume of corn oil with 10 mol% oleic acid was almost 

constant during first 240 s of the reaction and then decreased. The consumption of KOH during 

saponification of oleic acid at the interface ceased the transesterification of corn oil. During the 

saponification, the apparent interfacial tension was initially increased due to the increase in 

hydrophilicity by transfer of water produced at the interface to methanol phase, and then, 

decreased due to the dissolution of fatty acid methyl ester formed by the transesterification in 

both oil and methanol phases. 

1. Introduction 

Due to the depletion of the fossil fuels and the increasing environmental problem, there is a great demand 

for alternative sources of fossil fuel. Biodiesel produced from biomass resources is considered as a clean 

renewable fuel and the best candidate for a diesel fuel substitution. Biodiesel can be used in any 

compression ignition engines without any modification because it has similar properties to that of diesel 

produced from crude oil [1-3]. It was reported that biodiesel can reduce net carbon dioxide emissions 

by 78% on a lifecycle basis when compared to conventional diesel fuel [4]. Biodiesel known as fatty 

acid methyl ester (FAME) is usually produced from triglyceride (oils and fats) by transesterification 

with methanol in the presence of an acid or a base catalyst [5-7]. Basic homogeneous catalysts such as 

NaOH and KOH to improve biodiesel yields are used in conventional processes for production of 

biodiesel [8,9]. Homogeneous acid catalysts such as H2SO4 are also able to catalyze this reaction, but 

they are seldom used because they are less active and more corrosive. When the oils contains significant 

amounts of free fatty acids (FFAs) and water content, FFAs react with the alkaline catalyst to form 

soaps. Usually, esterification of FFA is carried out by acid-catalyzed processes to reduce FFA before 

alkali-catalyzed transesterification [10,11]. 

     Alkali-catalyzed transesterification is a two-phase liquid reaction system because methanol and oil 

are mutually-immiscible and therefore the overall reaction rate is controlled by both the interfacial area 
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and the diffusion of chemical species. The biodiesel production is generally carried out at the 

temperature ranging from 333 to 373 K for several hours in a stirred batch reactor [1-3]. Meanwhile, 

addition of co-solvent such as dimethyl ether (DME) and tetrahydrofuran (THF) to the liquid-liquid 

phase for homogenization could greatly promote the transesterification reaction rate [12]. In the 

homogeneous reaction, oil conversion of 100 and 97% was reached after a 1-min reaction at a KOH 

concentration of 0.5 wt% even at room temperature for DME and THF additions, respectively. In our 

previous studies [13,14], transesterification of sunflower oil (SFO) and waste cooking oil (WCO) in a 

microtube reactor was carried out and the flow patterns were simultaneously observed. We found that 

the flow patterns when using WCO, changed from a slug flow at the inlet region to a parallel flow at the 

middle region and then to a homogeneous flow at the outlet region as the reaction progressed at 333 K. 

These changes of flow pattern are caused by the formation of FAME which acts as a mutual solvent for 

the reactants. When SFO was used in a microtube reactor, fine droplets composed of the produced 

glycerol and methanol were dispersed and circulated in the oil segments. Similar phenomena was also 

observed by other researchers [15,16]. Thus, the reaction properties are clearly influenced by interfacial 

behaviors between segregated phases. 

     The pendant drop methods are widely applied for surface tension measurements [17-20]. In order to 

investigate the interfacial phenomena between oil and methanol phases, a pendant drop method was 

applied to clear the interfacial behaviors during the transesterification of SFO in the methanol containing 

4.5 wt% of KOH at 298 K [14]. If the reaction occurs between the two liquids, accompanying with the 

progress of the reaction, the interfacial tension should be changed with the reaction time. In this case, it 

should be difficult to decide the interfacial tension accurately, but we can use it to do some rough 

estimates, and infer the reaction mechanisms. In addition, this method would be an easy and convenient 

tools to evaluate the interfacial effect of surfactants [21] and ionic liquid [22,23] on the improvement of 

the transesterification reaction. 

     In this study, the interfacial tension between oil and methanol phase was determined by the pendant 

drop method in more details. In order to examine the surface activity of various compounds formed 

during the transesterification, oleic acid, monoolein, methyl oleate and glycerol were mixed with corn 

oil. The influences of these compounds on the interfacial tension were investigated. The changes in the 

volume and the apparent interfacial tension of a single oil drop were measured during the 

transesterification. 

2. Materials and methods 

2.1 Chemicals 

Corn oil, dehydrated methanol, potassium hydroxide, glycerol, acetic acid, and methyl oleate (oleic acid 

methyl ester) were obtained from Wako Pure Chemical Ind. Ltd., Japan. Monoolein (Glycerol 

monooleate; >40.0%) was obtained from Tokyo Chemical Industry Co., Ltd., Japan.  Oleic acid (>99%) 

was obtained from Sigma-Aldrich. The acid and saponification values of the oil were determined using 

standard titration methods [24]. The molar amount of triglyceride per gram is equal to one third of the 

molar amounts of fatty acids per gram which can be calculated by the difference between two values. 

Accordingly, the molecular weight of the oil was estimated from the reciprocal of the molar amount of 

triglyceride per gram. Water content in the oil was determined using a Karl-Fischer moisture titrator 

(MKC-610, Kyoto Electronic Manufacturing Co. Ltd.). The viscosity was determined with a torsion-

balanced, oscillation-type viscometer (VM-1G, CBC Materials Co., Ltd.). The density was determined 

using a pycnometer.  

2.2 Phase diagrams  

The bimodal curves in the triangular phase diagrams for the systems of methyl oleate/methanol/corn oil 

and oleic acid/methanol/corn oil were determined from turbidmetric analysis using the titration method. 

The measurement was carried out in a constant temperature reservoir at 298 K. Corn oil was mixed with 

oleic acid or methyl oleate to make homogeneous solution. Methanol was fed to the homogeneous 
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mixture through a microtube with a syringe pump and mixed. The point when the mixture transferred 

from transparent (homogeneous) to turbid (heterogeneous) was considered to be the saturation point of 

the methanol. The amount of added methanol was determined with an analytical balance. The tie lines 

were determined for the methyl oleate/methanol/corn oil system at the weight ratio of methyl 

oleate/methanol/corn oil = 10/45/45, 30/35/35 and 50/25/25. The mixture was shaken for about 2 h to 

allow intimate contact between the phases and separated into an oil layer and a methanol layer by 

sedimentation. Tie lines were obtained separately by analysing the samples taken from each layer. 

2.3 Pendant drop method  

The pendant drop method is one of the most accurate methods to measure interfacial tension. In this 

research, axisymmetric drop shape analysis-profile (ADSA-P) was used for interfacial tension 

measurement [25-28]. The interfacial tension during the transesterification at 298K was determined 

using the pendant drop apparatus as shown in Fig.1. Methanol or a 4.5 wt% methanol solution of KOH 

was used to fill a rectangular quartz cell (10×10×45 mm). The temperature was controlled at exactly 

298 K. Using an injection stainless needle with an outer diameter of 0.7 mm, the oil was slowly 

introduced into the methanol phase and a single drop was formed on the tip of the needle. The change 

in the shape of the oil drop was observed using a CCD camera with the reaction time noted. Pictures 

were taken automatically every 30 s. In ADSA-P, the experimental profile of a drop and density 

difference between the oil and the methanol phase were entered to the numerical program. In the 

numerical program, a series of Laplacian curves with known interfacial tension are fitted to the 

experimental profiles. The best fit identifies the true interfacial tension. Reliability of the apparatus was 

checked by measuring the interfacial tension in water-toluene system. The volume of a drop, V, was 

calculated by numerical integration of the profile. 

 

 
 

Figure 1. Experimental set-up of pendant drop technique. 

3. Results and discussion 

The fatty acid composition of corn oil was found to be palmitic (13.6%), stearic (1.9%), oleic (30.8%), 

linoleic (53.2%) and linolenic (0.5%) by gas chromatography analysis. Density and viscosity of corn oil 

at 298 K were 0.914 kg m-3 and 50.0 mPa s, respectively. Acid value and saponification value of corn 

oil were 0.0 and 193 mg-KOH g-1. The molecular weight determined from the acid and saponification 

value was 870. 

Figures 2 (a) and (b) present the triangular phase diagram determined from the turbidmetric analysis. 

The experimental results showed that the area of miscibility regions was large when oleic acid was 

added into the mixture of methanol and corn oil compared to methyl oleate. 
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Figure 2. Phase diagram of ternary systems at 25oC. (a); oleic acid/methanol/corn oil system, (b); methyl 

oleate/methanol/corn oil system, solid lines are tie lines. The composition scales are in weight fraction 

 

 In basic transesterification, the fatty acid methyl ester (FAME) yield is inhibited by free fatty acid 

and/or water. Free fatty acids in oil caused saponification (equation (1)) which reduces the FAME yield 

by consuming the base catalyst and leads to the difficulty of separation of biodiesel products. Water also 

reduces the FAME yield by the hydrolysis of FAME in the presence of base catalyst as equation (2). 

 

  RCOOH + KOH → RCOO-K+ + H2O                                                         (1) 

  RCOOCH3 + H2O → RCOOH +CH3OH                     (2) 
 

The volume ratio and the apparent interfacial tension of the drop for corn oil and corn oil with oleic 

acid content of 10 mol% were measured in methanol without KOH catalyst. As shown in figure 3 (a), 

both drop of corn oil and corn oil with oleic acid initially expanded due to the diffusion of methanol into 

the oil phases. In the presence of oleic acid in corn oil, the drop size after the initial expansion decreased 

due to the diffusion of oleic acid into the methanol phase. Figure 4 shows the volume change of the drop 

for corn oils with 10 mol% monoolein, 10 mol% glycerol and 10 mol % methyl oleate. Glycerol and 

methyl oleate was able to dissolve in methanol and therefore the drop volume ratio was decreased.  In 

the case of monoolein chosen as a model of intermediate product,  the volume change behaviour was 

Figure 3. Interfacial behaviours of corn oil (○) and corn oil with 10 mol% oleic acid  (■) at 25oC in 

methanol solution. (a); volume ratio of drop, (b); apparent interfacial tension; without KOH catalyst. 
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similar to that of pure corn oil, indicating that monoolein did not diffuse into methanol phase. As shown 

in figure 3(b), the apparent interfacial tension of corn oil with oleic acid content was lower than that of 

corn oil at the initial stage and gradually approached to the value of pure corn oil with the emission of 

oleic acid.   

The volume ratio and the apparent interfacial tension of the drop in methanol with KOH content of 

4.5 wt% were measured for evaluating the progress of transesterification. In the initial stage of the 

measurement, methanol including methoxide ion, which was formed by the reaction of methanol and 

KOH, could penetrate into the oil phase and then, the contact between corn oil and methoxide ion started 

the transesterification. As shown in figure 5 (a), the drop volume ratio of corn oil gradually decreased 

as time proceeds because of the dissolution of the reaction products such as FAME and glycerol. The 

reaction rate was increased with the increase in specific surface area due to the shrinkage of the drop 

along the reaction progress. The drop volume ratio of corn oil with oleic acid content of 10 mol% was 

almost constant for 240 s and then decreased. This means that the consumption of KOH during 

saponification of oleic acid at the interface ceased the transesterification of corn oil. 

The apparent interfacial tension for corn oil was monotonically decreased as time proceeds as shown 

in figure 5(b). Meanwhile, the apparent interfacial tension of corn oil with oleic acid increased and 

reached the maximum value. Water exhibits a very high surface tension when compared to other liquids. 

The increase in the apparent interfacial tension might be due to the presence of water, which was 

produced at the interface by saponification of oleic acid. The maximum interfacial tension reached 6.3 

mN m-1 at the oleic acid content of 10 mol%.  

 

Figure 5. Interfacial behaviors of corn oil (○), corn oil with 5 mol% oleic acid (●) and corn 

oil with 10 mol% oleic acid (■) at 25oC in methanol solution with 4.5 wt% KOH. (a); volume 

ratio of drop, (b); apparent interfacial tension. 

 

Figure 4. Effect of various compounds on change in volume ratio of drop without KOH catalyst. 
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Monoolein and oleic acid act as surfactant in aqueous solution. The surface activities of monoolein, 

oleic acid, methyl oleate and glycerol in methanol solution were evaluated from the change of the 

interfacial tension by their concentration as shown in figure 6. These compounds exhibited no surface 

activity in methanol solution and thereby did not lead to the remarkable decrease in the interfacial 

tension during the transesterification. This also means that these compounds are distributed in the drop 

due to no accumulation on the interface. 

When the oil drop was suspended in methanol with KOH content of 4.5 wt%, FAME arose as a 

consequence of transesterification on the interface and easily transferred to methanol phase. Accordingly, 

the existence of high concentration FAME on both oil and methanol would reduce the interfacial tension. 

The interfacial tensions of the oil drops with different compositions at the points of A, B and C in figure 

2(b) were determined. As the transesterification progressed, the composition would head in the direction 

of A, B and C. Figure 7 reveals that the methyl oleate concentrated on the interface by transesterification 

could reduce the interfacial tension significantly. 

The behaviours of glycerol were significantly different from those of FAME. Guan et al. [14] 

observed the flow behaviour in microtube reactor during the transesterification and found that fine 

droplets composed of glycerol and methanol were dispersed and circulated in the oil segments. Figure 

8 shows the drop of corn oil observed at 900 s after the beginning of the reaction. Fine droplets were 

observed and moved inside the single drop of corn oil, similar to the results reported by Guan et al. [14]. 

These phenomena suggested that the transesterification occurred inside the oil phase located adjacent to 

the interface. In addition, a fine streamline composed of glycerol appeared immediately beneath the oil 

drop because of the high density of glycerol. 

 

The effect of water content on the interfacial behaviour was investigated by using corn oil containing 

5 mol% oleic acid with and without water. Figure 9(b) indicated that apparent interfacial tensions were 

almost the same at the initial stage. In addition, the apparent interfacial tension of the water-saturated 

sample remained almost unchanged with time. Water in oil contributed the reverse reaction of 

saponification (equation (1)). Therefore, the saponification continued at a slow rate and depressed the 

transesterification until at least 600 s. Consequently, the volume ratio of the drop was also unchanged 

as shown in figure 9(a).  

 

Figure 6. Effect of various 

compounds on apparent interfacial 

tension. 

Figure 7. Relationship 

between apparent interfacial 

tension and methyl oleate 

concentration 

Figure 8. A corn oil drop 

in methanol solution with 

4.5 wt% KOH at 25oC at 

900 s. 
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Figure 9. Interfacial behaviours of corn oil with oleic acid (water content 0.074 wt%; □) and with oleic 

acid + water (water content 0.162wt%; ●) at 25oC in methanol solution with 4.5 wt% KOH. (a); volume 

ratio of drop, (b); apparent interfacial tension. 

4. Conclusions 

Interfacial behaviours during biodiesel synthesis significantly influenced the reaction rate of mass 

transfer controlled process in the two phase liquid-liquid system. The pendant drop method was applied 

to measure the volume and the apparent interfacial tension of the oil drop during the transesterification 

in methanol phase containing KOH catalyst. The drop volume of corn oil gradually decreased as time 

proceeds because of the dissolution of FAME and glycerol into methanol. The volume ratio of corn oil 

with 10 mol% oleic acid was almost constant for 240 s and then decreased. The consumption of KOH 

produced during saponification of oleic acid ceased the transesterification. During the saponification, 

the apparent interfacial tension was initially increased due to the increase in hydrophilicity of methanol 

by transfer of water produced at the interface. FAME formed by the transesterification could dissolve 

both oil and methanol phases and therefore reduced the apparent interfacial tension. 
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