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Abstract. Special analytical method for determining tangential tension stresses in reinforced 

concrete structures operating in conditions of complex resistance –torsion with bending is 

proposed in this paper. Its peculiarity consists in the approximation of rectangular and any 

complicated cross-sections of reinforced concrete structures with the help of their division into 

squares with the circles inscribed there in, connected together into a single monolithic figure. 

The dependence of tangential torsion stresses becomes valid on the distance to the centre of the 

circle under consideration within each j-th circle. The further the circle from the centre of the 

rectangle is located, the greater its moment of inertia becomes and the maximum stresses are 

reached in the middle of the rectangle the long sides. Such model makes it possible to remove 

the question of the necessity using of special tables also for their calculation in the elastic 

stage. Also it makes possible to separate the stress-strain state in a whole set of circular 

sections from the additional field associated with the deformation of the rectangular section. 

The authors corrected and significantly supplemented the dependencies for taking into account 

the deplanation of a rectangular cross-section rod. Attention is focused on the physical essence 

of longitudinal displacements caused by deplanation, an analogy with elementary movements 

caused by shearing forces is carried out. In the study, the classification of spatial cracks for 

reinforced concrete rod structures under the action torsion with bending was generalized; while 

the process of spatial cracks formation of the first, second, and third types is tied to the 

proposed method for determining tangential stresses (angular deformations) for complex cross-

sections. The proposed dependencies allow us to search for the values of the model design 

parameters at of the stress-strain state stages of the reinforced concrete rod structure, including 

in the plastic and in the limiting stages. The components of the torsion stress (angular 

deformations) are again synthesized and separated by the proposed method for the convenience 

of analysis in principal stresses tensors (main strains). Transformational transitions from a 

cylindrical to a Cartesian coordinate system and the attraction of local coordinate systems 

made it possible to simplify the equations as much as possible. Moreover, the equations are 

constructed in such a way that the resolving system does not turn into a decaying system. The 

physical interpretation of the solution obtained, with respect to the problem of crack resistance, 

is that it allows us to search for the minimum generalized load that corresponds to the 

formation of the first, second or third spatial crack types and the coordinates of their formation 

point. As a result, the effectiveness of the proposed method is shown with approximating 

rectangular and complex cross sections of reinforced concrete structures under the action 
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torsion with bending and taking into account physical nonlinearity, deplanation of cross-

sections, pre stressing in longitudinal and transverse reinforcement and the influence of local 

stress fields. 

1.  Introduction 

The deepening and improvement of theoretical studies of reinforced concrete structures work with 

their complex resistance – torsion with bending becomes more and more actual [1–3]. Due to the fact 

that such studies are carried out relatively, and due to the economic conditionality and the need to take 

into account the vast majority spatial work of the reinforced concrete structures (beams of monolithic 

overlapping, onboard elements and the reference contour of ribbed carvings and bridges, substructure 

and crane beams, contour beams of buildings with a monolithic frame, supports of power lines, 

reinforced concrete pylons, etc.). If we take into account at the same time, the inaccuracies admitted 

during all reinforced concrete structures installation and manufacturing [4–6] are practically working 

in conditions of complex resistance. 

It should be noted that circular cross-sections have only a certain proportion of the variety of 

reinforced concrete structures used in the practice of modern construction, as a rule, the shape of their 

cross-section is more complicated. 

2.  Purpose and objectives of the research 

Therefore, the purpose of this research is to develop methods for assessing the resistance of reinforced 

concrete structures under the action torsion with bending of rectangular and complex cross-sections 

(consisting of a set of rectangles), without resorting to complicated formulas and methods of the  

elasticity and plasticity theory. 

3. The main part of the research 

The proposed method for evaluating the reinforced concrete structures resistance of rectangular and 

complex cross-sections (consisting of a set of rectangles) is based on the fact that the rectangular 

section is divided into a number of squares, which are subsequently replaced by the rings marked in 

them circles, Figure 1. 

Moreover, if the integer number of squares does not fit into a rectangle, in this case, the division 

into squares also occurs in the opposite direction.  

Then one of the squares superimposition areas is excluded from different directions of breakdown 

and from the simulated section. Moreover, the squares beneath, in the middle and at the cross section, 

fit organically into the various types of cracks occurring precisely in the marked zones. Thus, the 

analysis of performed experiments [7–11] shows that in the case of torsion with bending, the following 

spatial cracks types occur: the first type (which intersects only longitudinal reinforcements for 

M >Mcrc and Q ≥ Qcrc), the second or third type (intersecting only the transverse reinforcement for 

M < Mcrc, Mt > Mt,crc and Q > Qcrc and oriented with further development in the direction of the 

point of concentrated force application or with an arbitrary orientation, respectively). 

Let's consider the proposed approach implementation, for example, with respect to the fracture 

resistance problem of reinforced concrete structures with complex resistance – torsion with bending. 

The formation of the first spatial crack occurs at an arbitrary point A, located on the lower or lateral 

faces or at an arbitrary point of the cross-section complex figure (T-shaped, I-shaped, box-shaped, 

etc.). Thus, each type of spatial cracks [12–15] is formed in a specific circle, and the use of the 

calculated formulas for a circular cross-section allows us to find an arbitrary the point of their 

formation. 

Formation of the first spatial crack occurs at an arbitrary point A located on the lower or lateral 

faces or at an arbitrary point of a complex figure of the cross section (T-shaped, I-shaped, box-shaped, 

etc.). Thus, each type of spatial cracks [12–15] is formed in a particular circle, and the use of 

computational formulas for the circular section allows us to find an arbitrary point of their formation. 
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Now it becomes clear that the proposed approach allows the well-known formulas use for circular 

cross-sections for the rectangular sections simulation, as well as any complex cross-sections consisting 

of rectangles. 

(а) (b) 

 

 

 
(c) (d) 

 

Figure 1. Diagrams of tangential tensions in torsion t , positive and negative zones of transverse 

rectangular sections deformation (a); approximation of the ABCDEFGH figure of the cross-section 

with the help of squares and inscribed circles (b), and the diagrams of the normal bt,iσ
 
and tangential 

zx
 
stresses in the cross-section, passing through an arbitrary point A (b, c), respectively. 

 

The equations located at a distance x from the support for determining the tangential torsion 

stresses t  in the corresponding cross-sectional circle and are recorded in a cylindrical and Cartesian 

coordinate system, accordance with Figure 1: 
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where is the distance from the center of the j-th circle to the point at which tangential torsional 

stresses are determined t,  are the coefficient of transition to local axes; t,u is the limiting tangential 
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the angular sections in view of their insignificant influence on the values of tangential stresses are not 

taken into account, Figure 1, b),  

 jtjtttt IIIII ,,2,1,  ,                                            (2) 

and each of the torsion moments incident on the inscribed circles are respectively determined, – 
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It,j is the inertia moment of the circle used in formula (2), inscribed in the corresponding square (the 

lower circle is used, as a rule, for the first type cracks, the middle circle is used for the second and 

third types, Figure 1, b);  is coefficient of transition to local axes. 

Method for determining the tangential tension stresses by approximating rectangular and any 

complicated cross-sections of reinforced concrete structures by their division into squares and the 

circles inserted into these squares, connected together into a single monolithic figure is proposed. It 

also allows us to remove questions about the choice of their two twisting stresses zx and yx, the need 

for the addition of vectors zx and yx in a rectangular section (with the resulting vector coinciding with 

the direction of the hydrodynamic trajectories) and the necessity of use them in special tables for 

calculation.  

Within each circle, the fairly well-known dependence of the tangential tensions from the distance 

to the circle center in question becomes fair. Moreover, the circle is from the rectangle center with 

larger its moment of inertia (except for its own, a term associated with the transfer of coordinates local 

axes is added to it). Thus, in the circles the tangential stresses of the torsion decrease, removed from 

the central circle.  

It should be noted that if the proposed method closes on formula (1), which is valid only for the j-th 

circle, it will not consider the deplanation associated with the rectangular cross-sectional shape and 

this question requires separate consideration (it is given below). We should also pay attention to the 

calculation devicet constructing, which is advisable to write out the equations for a complicated form 

of the cross-section, but not in a cylindrical one in a Cartesian coordinate system. In this case t,j, 

sought by formula (1), we will consider as a resultant of two components t,xz and t,xy, which are 

determined from the following dependences: 
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where t,xz,u, t,xy,u, are the components of the limiting values of tangential torsional stresses. 

In order to take into account plastic deformations, the moment of inertia It,j  and Ij is recommended 

to be simplified in the cracking stage: 

redjtjt II ,,, 85,0  ;   redjj II ,85,0  ,                                             (6) 

for dependencies in where the parameter It,j  does not belong to the same recommendation can be used 

with respect to the modules E and G, with respect to the stage of crack formation, and in subsequent 

loading stages, it is necessary to use the secant strain modulus and the variable coefficient of 

transverse strains for concrete [2] in the calculated dependences. 

The following formulas also contain reservations regarding the inelastic resistance of concrete 

where it is necessary. 

In addition to taking into account the physical nonlinearity of concrete with the help of a split 

module, the deplanation of cross-sections, pre stresses in longitudinal and transverse reinforcement, 

and the influence of the local stresses field are taken into account in the proposed method. 
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In this case, the deplanation of the rectangular cross section of the structure (Figure 1, a) will be 

taken into account with the use of the dependences given in [17], with some correction and necessary 

development for the relative angular deformations: 
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The physical nature of the displacements w consists in the fact that they are due to the tangential 

stresses of torsion and the shear deformations caused by them (here one can draw an analogy with the 

displacements Q , caused by the transverse force [17]). It follows that relative displacement of the 

deplanation w  will correspond to the relative deformations of the shift zx , which are caused by shear 

stresses of torsion t , Figure 1. It should also be taken into account that the displacement of the 

deplanation w  varies along the length of the reinforced concrete rod construction from zero at the 

pinched end to its maximum value at the free end. To take into account this circumstance, we correct 

the formula (6) by introducing an additional function  xf2  in the form: 

  









l

x
lxf 12 .                                                            (10) 

Indeed, for 0x ,   lxf 2  and for lx  ,   02 xf . As a result, the displacement due to the 

cross-sectional deformation is written as: 
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Thus, the displacement w  is a complex function, depending on the coordinates у, z, х. When 

finding the relative angular (shear) deformation of deplanation zxd ,  and yxd ,  with using the Cauchy 

curves, take the form: 
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where w , v ,   are the displacements in the direction of the axes, x, y and z, accordingly. With 

reference to the deplanation model described by formula (11), the displacements are 0v . In the 

end we will have: 
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where ulzxd ,,  and ulyxd ,,  are the components of the limiting relative angular deformations of 

deplanation. 
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4. The main working hypotheses and assumptions 

The basis of the calculated crack-forming model construction under the action torsion with bending for 

spatial cracks of the first type is the following calculation prerequisites [12–15, 18, 19]: 

– formation of the first type spatial crack, second or third occurs at an arbitrary point A located on 

the lower or lateral faces or at an arbitrary point of the cross-section complex figure (including a 

hollow, T-shaped cross-section, etc.) after the main deformations of the concrete elongation bt have 

reached their limit values bt,ul. 

– diagrams of tangential stresses in torsion t; positive and negative zones of transverse rectangular 

sections deplanation and the approximation of the cross section figure using the squares of the 

ABCDEFGH and the inscribed circles, are executed in accordance with the diagrams in Figure 1, a, b; 

– the diagrams of normal x and tangential stresses Qzx,  in the cross-section, passing through an 

arbitrary point A are approximated between the points 1 and 2 (Figure 1, c, d) by linear dependences. 

5. Derivation of calculated dependencies 

The following equations are used to evaluate the resistance of rod concrete structures to the formation 

of the first spatial crack. 

1). Equation of communication between normal stresses xσ  in a cross-section located at a distance 

from x  the support and a generalized external load expressed through the support reaction supR  at the 

time of the first spatial crack formation including the bending moment from the external forces 

xR sup , the bending moment peP ,00   from the pre stress force, the longitudinal force N and the force 

preliminary stresses P0, as well as local influences x
hb

R




sup

 ( x  – the calculation coefficient of local 

normal stresses x  in the direction of the х axis from the reference reactions), from which follows: 

redxred

redpredredredx

IAh5x

h5AePINIAσ
R

85.0.0

.085.085.0 ,00
sup







.                          (16) 

Note that in the formulas (16)–(33) below, all notations that are not deciphered correspond to the 

common notions of the mechanics of a solid deformable body and the theory of reinforced concrete. 

2). Equation for determining tangential torsion stresses jxy,t,  in a cross section located at a 

distance x from the support for spatial cracks of the first type. It is written in accordance with  

Figure 1, equation (5). For spatial cracks of the second and third types, the unknown coordinate y from 

equation (5) is determined: 
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3). Equations for the determination of tangential stresses Qxz,  in a cross section located at a 

distance x from the support. In this case, the coupling equations between tangential stresses in the 

cross-section of the reinforced concrete rod and the generalized load Rsup 2 and 1 take into account 

the transverse force from the reference reaction (taking into account local stresses) and the transverse 

force perceived by the bent rod. 

From this equation, the unknown coordinate z of the formation of spatial cracks of the second and 

third types is determined: 
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where xz  is the coefficient of local shear stress xz  in the z direction from the reference reactions.  
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With respect to cracks of the first type, there is no need in finding the coordinate z (the equation 

degenerates into an equality hz 5.0 ), in this case it is expedient to use equation (18) for 

determination Qzxτ , . After algebraic transformations, with respect to cracks of the first type, we get: 
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R
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12sup, 5.0   .                           (19) 

Here the parameter B1 is determined by the formula: 
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the parameter B2 for the T-section (shelf above), and the T-section (the shelf from below), is 

determined by the formulas, respectively,  
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2 ,                                                  (22)  

dz  is the distance from the gravity center of the section to the lower face, the parameter fh  for 

rectangular sections is assumed to be equal   3dzh , and the parameter hf is assumed to be equal to 

zd/3; u is the limiting tangential stress caused by transverse forces. 

4). The equation of the external load connection (expressed through the reference reaction Rsup) 

and normal stresses z , is recorded taking into account local stress fields from the reference reaction 

and applied to the construction of the concentrated force, and also taking into account the pre stress in 

the clamps and bends. From this equation, with the respect to the spatial cracks of the first, second and 

third types, the unknown zσ  is determined: 
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z  is the coefficient of local normal stresses z  in the direction of the z axis from the reference 

reactions; zk ,2  is the coefficient of local normal stresses z  in the direction of the z axis from the 

concentrated forces. 

5). Using the precondition that the main deformations of the concrete elongation reach their 

limiting values in the formation of spatial cracks, applied to spatial cracks of the first type 0yσ ,  
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1
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0yz  after algebraic transformations, a formula is obtained for determining the axial deformations 

of the elongation of concrete in the direction of the axis x : 
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Here xzdtxzQxzxz ,,,   ; xydtxyQxyxy ,,,   . The “plus” sign or “minus” sign is 

selected depending on the direction of the transverse force and the torque in the left or right side of 

construction the cross-section with respect to its vertical axis. 
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Then, using the connection x – x , we get: 

zdxxx E   ,85.0 .                                                    (26) 

Other equations are used for fractures of the second and third types. In particular, to determine the 

normal stresses x , the condition to achieve the values of the principal tensile stresses equal to btR  is 

used. Then, from the equation for determining the principal tensile stresses, taking into account that 
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transformations we obtain: 
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Here zxdtzxQzxzx ,,,   ; the “plus” sign or “minus” sign is selected depending on the 

direction of the transverse force and the torque in the left or right side of the structure cross-section 

with respect to its vertical axis; zxd ,
 – tangential torsion stresses caused by the deplanation of a 

rectangular cross-section rod, complementing tangential torsion stresses that occur in a rod of circular 

cross-section (or a complex section simulated with a square and inscribed circles in it – Figure 1, b). 

From the equation for determining the main deformations of concrete elongation (taking them 

equal bt,ulε ), angular deformations xz  are sought. As a result, using the dependence xz – xz , for 

tangential stresses xz  in the cross section, the following equation is obtained: 

 
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xz
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εεE



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


2/1

,

2
,,

2
,,

44444

1

85.0

   (28) 

Here it is necessary to emphasize that the dependence (28) for zx  includes the influence of 

tangential stresses (angular deformations) caused by transverse force, torque and deplanation of a 

rectangular section. From the dependence (28) is sought zx . From the dependence (4) we have 

tangential stresses tzx,  (in the limiting stage, before the formation of a crack, they can reach their 

limiting values uzx, ).  

Tangential stresses zxd ,  are sought using a known relationship valid for an isotropic body – for 

this zxd , , the value obtained from (14) is multiplied by the shear modulus. 

Now, having the components tzx, , zxd ,  and the resulting zx , by their difference, one can find 

Qzx,  either their limiting values (in a whole series of problems, including for the considered problem 

of crack resistance), to have limiting values Qzx,  is extremely important. 

6). Note that maximum tangential torsional stresses jxz,t,  applied to cracks of the second and third 

type t  are in the central circle and are determined from the relationship between the bending and 

torsion moments ηMM tndeb / : 

  
  

 
uxzt

jt,

j

jt

jt
jt,jxz,t,xzt, z

I

xR

yz

z
yz

I

M
,,

sup

2/122

2/122

,

,
sin 





 








 .       (29) 

In turn, the bending moment depends on Rsup and x, and with respect to the cracks of the second 

and third types on jxz,t,  the variable z  also exerts a significant influence. 

It should be emphasized that the maximum tangential torsion stresses jxy,t,  are sought not only 

with the ratio between the bending and tourque moments ηMM tndeb / , but also the relationship 
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between the maximum tangential stresses jxy,t,  and jxz,t, , similarly to that adopted in the materials 

resistance [16] using the coefficient  . 

   
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j
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 .                       (30) 

Here, according to the proposed model for approximating rectangular sections by dividing them 

into squares with inscribed circles, each circle has its own different from other circles, a pair of 

shearing stresses in the local Cartesian coordinate system, – zxt,xyt,   . Then in formula (30) =1. 

It should be emphasized that, with respect to cracks of the first type, tangential torsion stresses 

jxy,t,  in the lower circle are taken into account, reaching their highest values in accordance with the 

formula (5). 

7). Analyzing the resolving equations, it should also be noted that in the tensors of principal 

stresses (principal deformations), the components of the torsion stresses (angular deformations) 

separated by the proposed method for the convenience of analysis are synthesized. Transformational 

transitions from a cylindrical to a Cartesian coordinate system and the attraction of local coordinate 

systems made it possible to simplify the equations as much as possible. Moreover, the equations are 

constructed in such a way that the resolving system does not turn into a decaying system. 

Using the resulting equations with respect to the cracks of the second and third types, we form the 

function of several variables  87654321,,sup ,λ,λ,λ,λ,λ,λ,λ,x,λ,τ,τ,σ,y,z,σRF xytxztxz , which has the 

following form: 
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Performing the differentiation of the function (31) with respect to the corresponding variables and 

equating their derivatives with zero, an additional system of equations is obtained using the Lagrange 

multipliers i . From the solution of the equations additional system, a formula is obtained for 

determining the coordinate x  of the spatial crack point formation: 
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Similarly, a function of several variables 1F  is compiled, differentiation with respect to the 

corresponding variables is performed with the equating of the derivatives to zero, and the coordinate 

x  of the point of the first type spatial crack formation is determined. 

 
red

zzzzxred
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kkI
x
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

.0

85.0 ,2,2 
.                              (33) 

As a result, all the resolving equations and the parameters determined from them turn, out to be 

"closed" in a single solution to the problem associated with determining the minimum generalized load 

and the formation coordinates of the various types spatial cracks in reinforced concrete structures 

under the action torsion with bending. 

After finding the abscissa x of the point A, a spatial crack of the first, second or third type is formed 

and the search for the general cracking load expressed as a function through the support reaction Rsup, 

the spatial arrangement of the main sites is determined, in the vicinity of this point and the direction of 

the spatial crack development. 

In this case, the direction cosines l, m, n  are found from the stress state equations on the principal 

and axial areas and the condition of equality to the unit squared direction of the cosines, taking into 

account that for the problem under consideration 0y , 0 yzzy  , zxdtzxQzxzx ,,,   , 

xydtxyxy ,,   , but when modeling a rectangular section with inscribed circles txztxy ,,   , 

btR  1  (   is the coefficient taking into account the reduction of the limiting principal 

(minimum) tensile stresses compared with normal tensile stresses btx R ). 

The physical interpretation of the solution obtained is that it allows us to determine the minimum 

generalized load, which corresponds to the formation of the first spatial crack at an arbitrary point in 

the structure and the corresponding coordinates of its formation. 

6. Conclusions 

Based on the analysis of domestic existing scientific research and foreign scientists devoted to the 

study of reinforced concrete beams under complex resistance conditions, torsion with bending, 

normative documents, and the experimental and theoretical studies performed in this work, the 

following conclusions should be drawn. 

1. At the present time in Russia and abroad there are no sufficiently stringent recommendations and 

corresponding normative documents for determining the limiting states of the first and second group 

for reinforced concrete structures operating under conditions of a complex stress-strain bending state 

with torsion. The current documents rely either on too simplified models and do not reflect the actual 

resistance, or they do not give a clear algorithm for their calculation, and first of all in the investigation 

of fracture problems, since the torsion with bending the moment of crack formation and the magnitude 

of their inclination significantly influence the further tensile-deformed state. 

2. The authors proposed a special reception determining torsion shear stresses by approximating 

rectangular and any complex cross-sections of reinforced concrete structures by their division into 

squares with inscribed circles in them, interconnected into a single monolithic piece. This model 

allows you to remove questions about choosing the right of the two torsion stress zx  and yx  on the 

uncertainty of the addition of vectors zx  and yx  rectangular cross-section (with the resulting vector, 

which coincides with the direction of hydrodynamic trajectories) and the need using special tables for 

calculating them, not only in the elastic stage. It also makes possible to separate the strain-stressed 

state of a circular sections set from the additional field associated with the deformation of the 

rectangular section. Within each j-th circle, the known dependence of the tangential torsion stresses on 

the distance to the center of the circle under consideration becomes valid. In this case, the further the 

circle from the center of the rectangle is located, the greater its moment of inertia becomes; the 

maximum tangential torsion stresses are still reached in the middle of the long sides of the rectangle. 
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3. The deplanation of a rectangular cross-section is taken into account by correcting the already 

known dependencies and their necessary development with respect to relative angular deformations. 

Attention is focused on the physical nature of the displacements in the direction of the longitudinal 

axis of the reinforced concrete rod structure, associated with the tangential torsion stresses and the 

shear deformations caused by them (an analogy is made with the displacements Q , caused by the 

transverse force).  

The dependence proposed by the authors also takes into account the deplanation displacements w  

vary along the length of the reinforced concrete rod structure from zero at the clamped end to their 

maximum value at the free end.  

Thus, relative displacement of deplanation w  (or their decomposed components in Cartesian axes) 

due to tangential torsion stresses d  (or their decomposed components along the Cartesian axes) will 

correspond to the absolute shear displacements d . 

4. In the conducted research the classification of spatial cracks for reinforced concrete 

constructions under the action torsion with bending is generalized; while the spatial cracks of the first, 

second and third types’ formation is related to the proposed method of determining shearing stresses 

(angular deformations) for complex cross sections. 

5. The proposed dependencies allow us to find the values of the model design parameters (at an 

arbitrary point) at all stages of the stress-strain state of the reinforced concrete rod structures, including 

in the plastic stage and in the limiting stages. In particular, the dependences for the shear stresses zx  

(angular deformations zx ) due to both the transverse force and the torque allow us to find their values 

in the limiting stage that occurs before spatial cracks formation. The tangential stresses Qzx,  in the 

plastic stage are determined by the difference between the total tangential stresses (corresponding to 

the achievement btR1 ) and the plastic torsion stresses ut, . Similarly, angular deformations Qzx,  

in the plastic stage are determined by the difference between the total angular deformations zx  

(corresponding to the achievement ulbt,1   ) and plastic torsion deformations ult, . 

6. In tensors of main stresses (main deformations), the components of the torsion stress (angular 

deformations) separated by the proposed method for the convenience of analysis are again 

synthesized. Transformational transitions from the cylindrical to the Cartesian coordinate system and 

the attraction of local coordinate systems made it possible to simplify the equations as much as 

possible. Moreover, the equations are constructed in such a way that the resolving system does not 

turn into a decaying system. The physical interpretation of the solution obtained is that it allows us to 

search for the minimum generalized load that corresponds to the first spatial crack of the first, second 

or third types’ formation and the coordinates of their formation point. 

7. As a result, using the example of constructing a calculation model for the spatial cracks 

formation of the first, second and third types under the action torsion with bending based on the 

criterion for the formation of a spatial crack in the condition form for achieving the ultimate values of 

the concrete elongation bt by its main deformations bt,ul. The efficiency of the proposed method for 

approximating rectangular and complex cross-sections of reinforced concrete structures under the 

action torsion with bending is shown taking into account physical nonlinearity, deplanation of cross-

sections, pre stressing in longitudinal and transverse reinforcement and influence of local stress fields. 
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