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Abstract. The distinctive paper is devoted to theoretical foundations of boundary problems’ 

numerical mechanics solution with the use of wavelet-based boundary element method (BEM). 

Particularly the simplest boundary problem for Laplace operator is under consideration. Initial 

continual formulation of boundary problems, simple-layer potential basics and double-layer 

potential (including their properties), numerical solutions of Dirichlet and Neumann problems 

(so-called “boundary” systems of linear equations) are presented.  

1.   Initial continual formulations of boundary problems 

Let   be the given domain with boundary  ; ),( 21 xxx   are Cartesian coordinates;   is 

closure region of  ; n  is the external normal to the boundary  ; 2,1,/  ixii ; ),( 21 xxuu   

is unknown function (harmonic (in  ) and continuous (in  )); 
2

2

2

1   is Laplacian [1]. 

In Dirichlet problem, it is necessary to find u  with the given boundary values of u : 

 xxu ,0)( ;    xxgxu ),()( .                                        (1) 

In Neumann problem, it is necessary to find u with the given boundary values of normal derivative: 

     xxu ,0)( ;    xxfxnu ),()](/[ .     (2) 

It is necessary to find u with the given boundary values of u  (at the part 1  of the border  ) in 

mixed boundary and  normal derivative (at the part 2  of the border  ): 
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 xxu ,0)( ;   1),()(  xxgxu ;   2),()](/[  xxfxnu .                 (3) 

2.  Initial continual formulations of boundary problems 

Simple-layer potential )()0( xV  and double-layer potential )()1( xV  [2] are defined by formulas: 
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where   is the delta-function of boundary  ; v  and w are continuous functions defined at boundary 

 ; 
yn  is the external normal to the boundary   at point y . 

Let us now consider some properties of the simple potentials and a double layer. 

1. For each continuous function at the boundary   simple-layer potential )()0( xV  is continuous at 

the extension of the entire space and for || x  we have 
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2. For each sufficiently smooth  double-layer potential )()1( xV  has correct normal derivative. It 

is defined from the outside and from the inside by formulas 
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3. For each continuous function at the boundary   double-layer potential )()1( xV  ispotential 

function outward the boundary   and for || x  we have 

   |)|/1()()1( xxV  .                                                          (9) 

4. Double-layer potential )()1( xV  is continuous function at the domains  ,  \21 R  and 

boundary  . Limit values from outside and inside are defined by formulas 

  xxVxwxV ),()(5.0))(( )1()1(
;    xxVxwxV ),()(5.0))(( )1()1(

.     (10) 

The double layer potential has a discontinuity of the first kind in passing through the boundary   

    xxwxVxV ),())(())(( )1()1(
.                                          (11) 

5. For each sufficiently smooth  double-layer potential )()1( xV  with unit density ( 1)( xw ) 

takes the following values: 
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3.   Numerical solution of Dirichlet problem in unit basis 

Let   be piecewise-linear boundary, which is divided into rectilinear interval mjyy jj ...,,1,),( 1   

(thus we have mesh of boundary elements). Let )( *

jj y  , where 
*

jy  is the midpoint of the         j

- thinterval (boundary element). Then we have 
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We can seek a solution in the potential form of the a simple layer with an unknown density 

function v  on the boundary (4): 

 



m

j

jjy

Г

vxPdyxyvxu
1

2 )(
4

1
||ln)(

4

1
)(


;   





1

2||ln)(

j

j

y

y

yj dyxxP .      (14) 

It can be shown that 
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where 
T

jjj nnn ][ 21  is the unit vector of the outward normal to the j -th boundary element; 

T

jjj ttt ][ 21  is the unit vector of the tangent to the j -th boundary element; yxr  . 

Directly from the boundary condition of the Dirichlet problem, taking into account (14), a linear 

algebraic equations system of the following form is constructed 
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. 

This condition should be considered at the midpoints of boundary elements, which leads to a linear 

algebraic equations system of order m relating to unknowns, mivi  ..., ,1   ,   i.e. 
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It can be shown that system (15) has a symmetric matrix, but it is not well-conditioned 
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We can also find a solution in the potential form of a double layer with an unknown density 

function w on the boundary (4): 
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It can be shown that 
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Limit values (for x ) of ),( yxT j  from the outside and from the inside of domain   are 
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Thus boundary condition of Dirichlet problem  xxgxu   ,)()(  goes into condition of 

 xxgxV   ,)())(( )1(
. We have the following system of linear algebraic equations 
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This condition should be considered at the midpoints of boundary elements, which leads to a linear 

algebraic equations system of order m  relating to unknowns, miwi  ..., ,1   ,   i.e. 
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where it can be shown that 
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Therefore ijaa jiii  |,| ,, . Generally matrix of the coefficients of the boundary equations system 

(22) is not symmetric and well-conditioned. 

4.  Numerical solution of Neumann problem in unit basis 

We can find a solution in the potential form of a simple layer with an unknown density function v  on 

the boundary (14). Boundary condition has the form 
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This condition should be considered at the midpoints of boundary elements, which leads to a 

system of linear algebraic equations of order m  relating to unknowns, mivi  ..., ,1   ,   i.e. 
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We can also seek a solution in the potential form of a double layer with an unknown density 

function w on the boundary (17). Boundary condition has the form (23). This condition should be 

considered at the midpoints of boundary elements, which leads to a linear algebraic equations system 

of order m  relating to unknowns, miwi  ..., ,1   ,   i.e. 
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where it can be shown thatwe have a system of equations with a symmetric matrix, 
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5.   Proceeding to wavelet basis (Haar basis) 

The construction of the discrete Haar basis, as well as the construction of matrix averaging operators 

(reduction), is described in [3-5].  

Let us consider for instance quadratic domain }       :),( { 22211121   xxxx  

and divide each side of domain into eight elements. The total number of unknowns 5232 N , 

therefore, the maximum number of levels in the Haar basis 5M . Locations of the nodes of each 

level of the Haar basis are presented in Figure 1. Let us consider the following problem: 

 ),(   ),,( 2121 xxxxFu ;    ),(   ,0),( 2121 xxxxu , 

where )(),( 21 PxxPxxF  ; Px  is the given coordinate; )(x  is the Dirac delta function [6]. 
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(a)                                                   (b)                                          (c) 

 

(d)                                                   (e)                                          (f) 

Figure 1. Locations of nodes at Haar levels basis: (a) zero level; (b) the first level;  

(c) the second level; (d) the third level; (e) the fourth level; (f) the fifth level. 

 

An example of the reduction choice for a given problem is shown in Figure 2, where the nodes of 

the second and third levels are shown, with backgrounds for the averaging nodes being selected. 

 

 
(a) 

 
 (b) (c) 

Figure 2. Sample of reduction: (a) computational scheme; (b) the second level; (c) the third level. 
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6.  Conclusion 

The proposed wavelet-based boundary element method can be effectively used, when it is necessary to 

find only the most accurate solution in some pre-known domains. Generally the choice of these 

domains is a priori data with respect to the structure being modelled. Designers usually choose 

domains with the so-called edge effect and regions which are subject to specific operational 

requirements. 

It is obvious that the stress-strain state in such domains is of paramount importance. Specified 

factors along with the obvious needs of the designer or researcher to reduce computational costs cause 

considerable urgency of constructing of special algorithms for obtaining local solutions of boundary 

problems. Wavelet analysis provides effective and popular tool for such researches.  
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